ﻻ يوجد ملخص باللغة العربية
The generation of spin current and spin polarization in 2DEG Rashba system is considered, in which the spin-orbital coupling (SOC) is modulated by an ac gate voltage. By using non-Abelian gauge field method, we show the presence of an additional electric field. This field induces a spin current generated even in the presence of impurity scattering and is related to the time-modulation of the Rashba SOC strength. In addition, the spin precession can be controlled by modulating the modulation frequency of the Rashba SOC strength. It is shown that at high modulation frequency, the precessional motion is suppressed so that the electron spin polarization can be sustained in the 2DEG
Employing unbiased large-scale time-dependent density-matrix renormalization-group simulations, we demonstrate the generation of a charge-current vortex via spin injection in the Rashba system. The spin current is polarized perpendicular to the syste
We demonstrate a spin pump to generate pure spin current of tunable intensity and polarization in the absence of charge current. The pumping functionality is achieved by means of an ac gate voltage that modulates the Rashba constant dynamically in a
We have performed density functional theory calculation and tight binging analysis in order to investigate the mechanism for the giant Rashba-type spin splitting (RSS) observed in Bi/Ag(111). We find that local orbital angular momentum induces moment
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this corr
We study theoretically the spin and orbital angular momentum (OAM) Hall effect in a high mobility two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin and OAM torque corrections, respectively, t