ﻻ يوجد ملخص باللغة العربية
In this paper, we construct a kind of new braided monoidal category over two Hom-Hopf algerbas $(H,alpha)$ and $(B,beta)$ and associate it with two nonlinear equations. We first introduce the notion of an $(H,B)$-Hom-Long dimodule and show that the Hom-Long dimodule category $^{B}_{H} Bbb L$ is an autonomous category. Second, we prove that the category $^{B}_{H} Bbb L$ is a braided monoidal category if $(H,alpha)$ is quasitriangular and $(B,beta)$ is coquasitriangular and get a solution of the quantum Yang-Baxter equation. Also, we show that the category $^{B}_{H} Bbb L$ can be viewed as a subcategory of the Hom-Yetter-Drinfeld category $^{Ho B}_{Ho B} Bbb {HYD}$. Finally, we obtain a solution of the Hom-Long equation from the Hom-Long dimodules.
In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally,
We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois gr
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebr
In this paper, we introduce the notions of biderivations and linear commuting maps of Hom-Lie algebras and superalgebras. Then we compute biderivations of the q-deformed W(2,2) algebra, q-deformed Witt algebra and superalgebras by elementary and dire