ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural stability of Lattice Boltzmann schemes

75   0   0.0 ( 0 )
 نشر من قبل Claire David
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this work is to determine classes of traveling solitary wave solutions for Lattice Boltzmann schemes by means of an hyperbolic ansatz. It is shown that spurious solitary waves can occur in finite-difference solutions of nonlinear wave equation. The occurence of such a spurious solitary wave, which exhibits a very long life time, results in a non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a behavior is referred here to have a structural instability of the scheme, since the space of solutions spanned by the numerical scheme encompasses types of solutions (solitary waves in the present case) that are not solutions of the original continuous equations. This paper extends our previous work about classical schemes to Lattice Boltzmann schemes.



قيم البحث

اقرأ أيضاً

90 - Yao Wu , Yong Zhao , Zhenhua Chai 2019
In this paper, we perform a more general analysis on the discrete effects of some boundary schemes of the popular one- to three-dimensional DnQq multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation (CDE). Investigated bo undary schemes include anti-bounce-back(ABB) boundary scheme, bounce-back(BB) boundary scheme and non-equilibrium extrapolation(NEE) boundary scheme. In the analysis, we adopt a transform matrix $textbf{M}$ constructed by natural moments in the evolution equation, and the result of ABB boundary scheme is consistent with the existing work of orthogonal matrix $textbf{M}$. We also find that the discrete effect does not rely on the choice of transform matrix, and obtain a relation to determine some of the relaxation-time parameters which can be used to eliminate the numerical slip completely under some assumptions. In this relation, the weight coefficient is considered as an adjustable parameter which makes the parameter adjustment more flexible. The relaxation factors associated with second moments can be used to eliminate the numerical slip of ABB boundary scheme and BB boundary scheme while the numerical slip can not be eliminated of NEE boundary scheme. Furthermore, we extend the relations to complex-valued CDE, several numerical examples are used to test the relations.
In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion terms in the coupled system are modeled by introducing additional collision operators, which can be used to avoid special treatments for the gradient terms. In addition, the auxiliary source terms are constructed properly such that the numerical diffusion caused by the convection can be eliminated. We adopt the developed LB model to study two important systems, i.e., the coupled chemotaxis-fluid system and the double-diffusive convection system with Soret and Dufour effects. We first test the present LB model through considering a steady-state case of coupled chemotaxis-fluid system, then we analyze the influences of some physical parameters on the formation of sinking plumes. Finally, the double-diffusive natural convection system with Soret and Dufour effects is also studied, and the numerical results agree well with some previous works.
In this contribution we extend the Taylor expansion method proposed previously by one of us and establish equivalent partial differential equations of DDH lattice Boltzmann scheme at an arbitrary order of accuracy. We derive formally the associated d ynamical equations for classical thermal and linear fluid models in one to three space dimensions. We use this approach to adjust relaxation parameters in order to enforce fourth order accuracy for thermal model and diffusive relaxation modes of the Stokes problem. We apply the resulting scheme for numerical computation of associated eigenmodes and compare our results with analytical references.
236 - Q. Li , Y. L. He , G. H. Tang 2010
This paper proposes an improved lattice Boltzmann scheme for incompressible axisymmetric flows. The scheme has the following features. First, it is still within the framework of the standard lattice Boltzmann method using the single-particle density distribution function and consistent with the philosophy of the lattice Boltzmann method. Second, the source term of the scheme is simple and contains no velocity gradient terms. Owing to this feature, the scheme is easy to implement. In addition, the singularity problem at the axis can be appropriately handled without affecting an important advantage of the lattice Boltzmann method: the easy treatment of boundary conditions. The scheme is tested by simulating Hagen-Poiseuille flow, three-dimensional Womersley flow, Wheeler benchmark problem in crystal growth, and lid-driven rotational flow in cylindrical cavities. It is found that the numerical results agree well with the analytical solutions and/or the results reported in previous studies.
214 - Q. Li , Y. L. He , G. H. Tang 2009
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg ence for its excellent numerical stability. Compared with the existing axisymmetric thermal LB models, the present model is simpler and retains the inherent features of the standard LB method. Numerical simulations are carried out for the thermally developing laminar flows in circular ducts and the natural convection in an annulus between two coaxial vertical cylinders. The Nusselt number obtained from the simulations agrees well with the analytical solutions and/or the results reported in previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا