ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards higher order lattice Boltzmann schemes

247   0   0.0 ( 0 )
 نشر من قبل Francois Dubois
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution we extend the Taylor expansion method proposed previously by one of us and establish equivalent partial differential equations of DDH lattice Boltzmann scheme at an arbitrary order of accuracy. We derive formally the associated dynamical equations for classical thermal and linear fluid models in one to three space dimensions. We use this approach to adjust relaxation parameters in order to enforce fourth order accuracy for thermal model and diffusive relaxation modes of the Stokes problem. We apply the resulting scheme for numerical computation of associated eigenmodes and compare our results with analytical references.



قيم البحث

اقرأ أيضاً

The goal of this work is to determine classes of traveling solitary wave solutions for Lattice Boltzmann schemes by means of an hyperbolic ansatz. It is shown that spurious solitary waves can occur in finite-difference solutions of nonlinear wave equ ation. The occurence of such a spurious solitary wave, which exhibits a very long life time, results in a non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a behavior is referred here to have a structural instability of the scheme, since the space of solutions spanned by the numerical scheme encompasses types of solutions (solitary waves in the present case) that are not solutions of the original continuous equations. This paper extends our previous work about classical schemes to Lattice Boltzmann schemes.
170 - Jiri Adamek 2011
Higher-order recursion schemes are recursive equations defining new operations from given ones called terminals. Every such recursion scheme is proved to have a least interpreted semantics in every Scotts model of lambda-calculus in which the termina ls are interpreted as continuous operations. For the uninterpreted semantics based on infinite lambda-terms we follow the idea of Fiore, Plotkin and Turi and work in the category of sets in context, which are presheaves on the category of finite sets. Fiore et al showed how to capture the type of variable binding in lambda-calculus by an endofunctor Hlambda and they explained simultaneous substitution of lambda-terms by proving that the presheaf of lambda-terms is an initial Hlambda-monoid. Here we work with the presheaf of rational infinite lambda-terms and prove that this is an initial iterative Hlambda-monoid. We conclude that every guarded higher-order recursion scheme has a unique uninterpreted solution in this monoid.
139 - William B. Kilgore 2011
I apply commonly used regularization schemes to a multi-loop calculation to examine the properties of the schemes at higher orders. I find complete consistency between the conventional dimensional regularization scheme and dimensional reduction, but I find that the four dimensional helicity scheme produces incorrect results at next-to-next-to-leading order and singular results at next-to-next-to-next-to-leading order. It is not, therefore, a unitary regularization scheme.
We present a convergence proof for higher order implementations of the projective integration method (PI) for a class of deterministic multi-scale systems in which fast variables quickly settle on a slow manifold. The error is shown to contain contri butions associated with the length of the microsolver, the numerical accuracy of the macrosolver and the distance from the slow manifold caused by the combined effect of micro- and macrosolvers, respectively. We also provide stability conditions for the PI methods under which the fast variables will not diverge from the slow manifold. We corroborate our results by numerical simulations.
We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer d epth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا