ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of Long-Range Correlations in Random Networks

188   0   0.0 ( 0 )
 نشر من قبل Shogo Mizutaka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an analytical analysis of the long-range degree correlation of the giant component in an uncorrelated random network by employing generating functions. By introducing a characteristic length, we find that a pair of nodes in the giant component is negatively degree-correlated within the characteristic length and uncorrelated otherwise. At the critical point, where the giant component becomes fractal, the characteristic length diverges and the negative long-range degree correlation emerges. We further propose a correlation function for degrees of the $l$-distant node pairs, which behaves as an exponentially decreasing function of distance in the off-critical region. The correlation function obeys a power-law with an exponential cutoff near the critical point. The ErdH{o}s-R{e}nyi random graph is employed to confirm this critical behavior.



قيم البحث

اقرأ أيضاً

Neuromorphic networks can be described in terms of coarse-grained variables, where emergent sustained behaviours spontaneously arise if stochasticity is properly taken in account. For example it has been recently found that a directed linear chain of connected patch of neurons amplifies an input signal, also tuning its characteristic frequency. Here we study a generalization of such a simple model, introducing heterogeneity and variability in the parameter space and long-range interactions, breaking, in turn, the preferential direction of information transmission of a directed chain. On one hand, enlarging the region of parameters leads to a more complex state space that we analytically characterise; moreover, we explicitly link the strength distribution of the non-local interactions with the frequency distribution of the network oscillations. On the other hand, we found that adding long-range interactions can cause the onset of novel phenomena, as coherent and synchronous oscillations among all the interacting units, which can also coexist with the amplification of the signal.
We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge w hen the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwells construction.
We derive exact results for displacement fields that develop as a response to external pinning forces in two dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Greens fun ction formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as $1/r$ at large distances $r$ away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a non-trivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
We show that real multiplex networks are unexpectedly robust against targeted attacks on high degree nodes, and that hidden interlayer geometric correlations predict this robustness. Without geometric correlations, multiplexes exhibit an abrupt break down of mutual connectivity, even with interlayer degree correlations. With geometric correlations, we instead observe a multistep cascading process leading into a continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are important for the design of efficient protection strategies and of robust interacting networks in many domains.
78 - K. Takeda , I. Ichinose 2002
In the previous paper, we studied the random-mass Dirac fermion in one dimension by using the transfer-matrix methods. We furthermore employed the imaginary vector potential methods for calculating the localization lengths. Especially we investigated effects of the nonlocal but short-range correlations of the random mass. In this paper, we shall study effects of the long-range correlations of the random mass especially on the delocalization transition and singular behaviours at the band center. We calculate localization lengths and density of states for various nonlocally correlated random mass. We show that there occurs a phase transition as the correlation length of the random Dirac mass is varied. The Thouless formula, which relates the density of states and the localization lengths, plays an important role in our investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا