ﻻ يوجد ملخص باللغة العربية
We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwells construction.
We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that whe
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of e
We elaborate on a linear time implementation of the Collective Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in a network via optimal percolation. We show that the computational com
We study a spatial network model with exponentially distributed link-lengths on an underlying grid of points, undergoing a structural crossover from a random, ErdH{o}s--Renyi graph to a $2D$ lattice at the characteristic interaction range $zeta$. We
We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the sy