ﻻ يوجد ملخص باللغة العربية
This paper concerns the local well-posedness for the good Boussinesq equation subject to quasi-periodic initial conditions. By constructing a delicately and subtly iterative process together with an explicit combinatorial analysis, we show that there exists a unique solution for such a model in a small region of time. The size of this region depends on both the given data and the frequency vector involved. Moreover the local solution has an expansion with exponentially decaying Fourier coefficients.
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f
In this note we discuss the diffusive, vector-valued Burgers equations in a three-dimensional domain with periodic boundary conditions. We prove that given initial data in $H^{1/2}$ these equations admit a unique global solution that becomes classica
In this paper, we consider the almost sure well-posedness of the Cauchy problem to the Cahn-Hilliard-Navier-Stokes equation with a randomization initial data on a torus $mathbb{T}^3$. First, we prove the local existence and uniqueness of solution. Fu
In this paper, we investigate the one-dimensional derivative nonlinear Schrodinger equations of the form $iu_t-u_{xx}+ilambdaabs{u}^k u_x=0$ with non-zero $lambdain Real$ and any real number $kgs 5$. We establish the local well-posedness of the Cauch
The Cauchy problem for a scalar conservation laws admits a unique entropy solution when the data $u_0$ is a bounded measurable function (Kruzhkov). The semi-group $(S_t)_{tge0}$ is contracting in the $L^1$-distance. For the multi-dimensional Burgers