ﻻ يوجد ملخص باللغة العربية
In this paper, we consider two-flavor QCD at zero temperature and finite isospin chemical potential ($mu_I$) using a model-independent analysis within chiral perturbation theory at next-to-leading order. We calculate the effective potential, the chiral condensate and the pion condensate in the pion-condensed phase at both zero and nonzero pionic source. We compare our finite pionic source results for the chiral condensate and the pion condensate with recent (2+1)-flavor lattice QCD results and find that they are in excellent agreement.
We reconsider the problem of calculating the vacuum free energy (density) of QCD and the shift of the quark condensates in the presence of a uniform background magnetic field using two-and-three-flavor chiral perturbation theory ($chi$PT). Using the
The confinement-deconfinement transition is discussed from topological viewpoints. The topological change of the system is achieved by introducing the dimensionless imaginary chemical potential ($theta$). Then, the non-trivial free-energy degeneracy
We present two-loop results for the quark condensate in an external magnetic field within chiral perturbation theory using coordinate space techniques. At finite temperature, we explore the impact of the magnetic field on the pion-pion interaction in
We present a calculation of the $eta$-$eta$ mixing in the framework of large-$N_c$ chiral perturbation theory. A general expression for the $eta$-$eta$ mixing at next-to-next-to-leading order (NNLO) is derived, including higher-derivative terms up to
We study finite isospin chiral perturbation theory ($chi$PT) in a uniform external magnetic field and find the condensation energy of magnetic vortex lattices using the method of successive approximations (originally used by Abrikosov) near the upper