ﻻ يوجد ملخص باللغة العربية
The evolution of magnetic helicity has a close relationship with solar eruptions and is of interest as a predictive diagnostic. In this case study, we analyse the evolution of the normalised emergence, shearing and total magnetic helicity components in the case of three flaring and three non-flaring active regions (ARs) using SHARPs (Spaceweather Helioseismic Magnetic Imager Active Region Patches) vector magnetic field data. The evolution of the three magnetic helicity components is analysed with wavelet transforms, revealing significant common periodicities of the normalised emergence, shearing and total helicity fluxes before flares in the flaring ARs. The three non-flaring ARs do not show such common periodic behaviour. This case study suggests that the presence of significant periodicities in the power spectrum of magnetic helicity components could serve as a valuable precursor for flares.
We analyzed temporal and periodic behavior of sunspot counts (SSCs) in flaring (C, M, or X class flares), and non-flaring active regions (ARs) for the almost two solar cycles (1996 through 2016). Our main findings are as follows: i) The temporal vari
In a recent work, Kilcik et al. (2017), have detected the temporal and periodic behavior of sunspot counts (SSC) in flaring (i.e. C, M, or X class flares), and non-flaring active regions for the last two solar cycles, covering the period: 1996 - 2016
With machine learning entering into the awareness of the heliophysics community, solar flare prediction has become a topic of increased interest. Although machine learning models have advanced with each successive publication, the input data has rema
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six
Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma p