ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-damping oscillations at flaring loops

88   0   0.0 ( 0 )
 نشر من قبل Dong Li Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at O I window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.



قيم البحث

اقرأ أيضاً

The analysis of a hot loop oscillation event using SOHO/SUMER, GOES/SXI, and RHESSI observations is presented. Damped Doppler shift oscillations were detected in the Fe XIX line by SUMER, and interpreted as a fundamental standing slow mode. The evolu tion of soft X-ray emission from GOES/SXI and hard X-ray sources from RHESSI suggests that the oscillations of a large loop are triggered by a small flare, which may be produced by interaction (local reconnection) of this large loop with a small loop at its footpoint. This study provides clear evidence supporting our early conjecture that the slow-mode standing waves in hot coronal loops are excited by impulsive heating (small or microflares) at the loops footpoint.
We present the first observational evidence of multiple slow acoustic oscillations in the post flaring loops of the corona of Proxima Centauri using XMM-Newton observations. We find the signature of periodic oscillations localized in the decay phase of the flare in its soft (0.3-10.0 keV) X-ray emissions. Using the standard wavelet tool, we find the multiple periodicities of 1261 s and 687 s. These bursty oscillations persist for durations of 90 minutes and 50 minutes, respectively, for more than 4 cycles. The intensity oscillations with the period of 1261 s may be the signature of the fundamental mode of slow magnetoacoustic waves with the phase-speed of 119 km s$^{-1}$ in the loop of the length 7.5$times 10^{9}$ cm heated initially to obtain the flare peak temperature of 33 MK and later cooled down in the decay phase maintained at the average temperature of 7.2 MK. The other period of 687 s may be associated with the first overtone of slow magnetoacoustic oscillations in the flaring loop. The fundamental mode oscillations show a dissipation with damping time of 47 min. The period ratio P$_{1}$/P$_{2}$ is found to be 1.83 indicating that such oscillations are most likely excited in longitudinal density stratified stellar loops. We estimate the density scale height of stellar loop system as 22.6 Mm, which is smaller than the hydrostatic scale height of the hot loop system, and implies the existence of non-equilibrium conditions.
We have developed a general framework for modeling gyrosynchrotron and free-free emission from solar flaring loops and used it to test the premise that 2D maps of source parameters, particularly magnetic field, can be deduced from spatially resolved microwave spectropolarimetry data. In this paper we show quantitative results for a flaring loop with a realistic magnetic geometry, derived from a magnetic field extrapolation, and containing an electron distribution with typical thermal and nonthermal parameters, after folding through the instrumental profile of a realistic interferometric array. We compare the parameters generated from forward fitting a homogeneous source model to each line of sight through the folded image data cube with both the original parameters used in the model and with parameters generated from forward fitting a homogeneous source model to the original (unfolded) image data cube. We find excellent agreement in general, but with systematic effects that can be understood as due to finite resolution in the folded images and the variation of parameters along the line of sight, which are ignored in the homogeneous source model. We discuss the use of such 2D parameter maps within a larger framework of 3D modeling, and the prospects for applying these methods to data from a new generation of multifrequency radio arrays now or soon to be available.
77 - Rui Zhu , Baolin Tan , Yingna Su 2020
We have performed microwave diagnostics of the magnetic field strengths in solar flare loops based on the theory of gyrosynchrotron emission. From Nobeyama Radioheliograph observations of three flare events at 17 and 34 GHz, we obtained the degree of circular polarization and the spectral index of microwave flux density, which were then used to map the magnetic field strengths in post-flare loops. Our results show that the magnetic field strength typically decreases from ~800 G near the loop footpoints to ~100 G at a height of 10--25 Mm. Comparison of our results with magnetic field modeling using a flux rope insertion method is also discussed. Our study demonstrates the potential of microwave imaging observations, even at only two frequencies, in diagnosing the coronal magnetic field of flaring regions.
238 - I. Arregui , J.L. Ballester 2010
Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also prese nt. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا