ﻻ يوجد ملخص باللغة العربية
Adaptive gradient methods, especially Adam-type methods (such as Adam, AMSGrad, and AdaBound), have been proposed to speed up the training process with an element-wise scaling term on learning rates. However, they often generalize poorly compared with stochastic gradient descent (SGD) and its accelerated schemes such as SGD with momentum (SGDM). In this paper, we propose a new adaptive method called DecGD, which simultaneously achieves good generalization like SGDM and obtain rapid convergence like Adam-type methods. In particular, DecGD decomposes the current gradient into the product of two terms including a surrogate gradient and a loss based vector. Our method adjusts the learning rates adaptively according to the current loss based vector instead of the squared gradients used in Adam-type methods. The intuition for adaptive learning rates of DecGD is that a good optimizer, in general cases, needs to decrease the learning rates as the loss decreases, which is similar to the learning rates decay scheduling technique. Therefore, DecGD gets a rapid convergence in the early phases of training and controls the effective learning rates according to the loss based vectors which help lead to a better generalization. Convergence analysis is discussed in both convex and non-convex situations. Finally, empirical results on widely-used tasks and models demonstrate that DecGD shows better generalization performance than SGDM and rapid convergence like Adam-type methods.
Several variants of stochastic gradient descent (SGD) have been proposed to improve the learning effectiveness and efficiency when training deep neural networks, among which some recent influential attempts would like to adaptively control the parame
We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is fur
In recent years, distributed optimization is proven to be an effective approach to accelerate training of large scale machine learning models such as deep neural networks. With the increasing computation power of GPUs, the bottleneck of training spee
Stochastic gradient descent (SGD), which dates back to the 1950s, is one of the most popular and effective approaches for performing stochastic optimization. Research on SGD resurged recently in machine learning for optimizing convex loss functions a
We present an adaptive stochastic variance reduced method with an implicit approach for adaptivity. As a variant of SARAH, our method employs the stochastic recursive gradient yet adjusts step-size based on local geometry. We provide convergence guar