ﻻ يوجد ملخص باللغة العربية
We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms embedded in a non-linear optical medium, coupled to a single-mode quantized electromagnetic field. The optical medium is pumped externally through a classical electric field, so that there is a degenerate parametric amplification effect, which strongly modifies the field dynamics without affecting the atomic sector. Through a semiclassical description the different phases of this extended Dicke model are described. The quantum phase transition is characterized with the expectation values of some observables of the system as well as the Berry phase and its first derivative, where such quantities serve as order parameters. It is remarkable that the model allows the control of the quantum criticality through a suitable choice of the parameters of the non-linear optical medium, which could make possible the use of a low intensity laser to access the superradiant region experimentally.
The instability, so-called the quantum-phase-like transition, in the Dicke model with a rotating-wave approximation for finite $N$ atoms is investigated in terms of the Berry phase and the fidelity. It can be marked by the discontinuous behavior of t
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, en
This paper is concerned with quantum dynamics of a system coupled to a critical reservoir. In this context, we employ the Dicke model which is known to exhibit a super radiant quantum phase transition (QPT) and we allow one of the mirrors to move und
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self