ﻻ يوجد ملخص باللغة العربية
Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walk, and in particular for the triangular lattice chiral walk recently introduced by the authors. A key element in the enumeration is the derivation of some remarkable identities involving trigonometric sums --which are also important building blocks of non trivial quantum models such as the Hofstadter model-- and their explicit rewriting in terms of multiple binomial sums. An intriguing connection is also made with number theory and some classes of Apery-like numbers, the cousins of the Apery numbers which play a central role in irrationality considerations for {zeta}(2) and {zeta}(3).
We compute the partition function of the $q$-states Potts model on a random planar lattice with $pleq q$ allowed, equally weighted colours on a connected boundary. To this end, we employ its matrix model representation in the planar limit, generalisi
We examine the groundstate wavefunction of the rotor model for different boundary conditions. Three conjectures are made on the appearance of numbers enumerating alternating sign matrices. In addition to those occurring in the O($n=1$) model we find
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU(3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T-Q relation, and the
We consider the generating function of the algebraic area of lattice walks, evaluated at a root of unity, and its relation to the Hofstadter model. In particular, we obtain an expression for the generating function of the n-th moments of the Hofstadt
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities amon