ﻻ يوجد ملخص باللغة العربية
Weyl points are the simplest topologically-protected degeneracy in a three-dimensional dispersion relation. The realization of Weyl semimetals in photonic crystals has allowed these singularities and their consequences to be explored with electromagnetic waves. However, it is difficult to achieve nonlinearities in such systems. One promising approach is to use the strong-coupling of photons and excitons, because the resulting polaritons interact through their exciton component. Yet topological polaritons have only been realized in two dimensions. Here, we predict that the dispersion relation for polaritons in three dimensions, in a bulk semiconductor with an applied magnetic field, contains Weyl points and Weyl line nodes. We show that absorption converts these Weyl points to Weyl exceptional rings. We conclude that bulk semiconductors are a promising system in which to investigate topological photonics in three dimensions, and the effects of dissipation, gain, and nonlinearity.
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
I theoretically investigate the response of bulk semiconductors to excitation by twisted light below the energy bandgap. To this end, I modify a well-known model of light-semiconductor interaction to account for the conservation of the lights momentu
Exceptional points (EPs) are singularities of energy levels in non-Hermitian systems. In this Letter, we demonstrate the surface of EPs on a magnon polariton platform composed of coupled magnons and microwave photons. Our experiments show that EPs fo
While conventional semiconductor technology relies on the manipulation of electrical charge for the implementation of computational logic, additional degrees of freedom such as spin and valley offer alternative avenues for the encoding of information
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the