ﻻ يوجد ملخص باللغة العربية
In this chapter, we review some historical understanding and recent advances on the Initial Mass Function (IMF) and the Core Mass Function (CMF), both in terms of observations and theories. We focus mostly on star formation in clustered environment since this is suggested by observations to be the dominant mode of star formation. The statistical properties and the fragmentation behaviour of turbulent gas is discussed, and we also discuss the formation of binaries and small multiple systems.
Observations and semianalytical galaxy formation and evolution models (SAMs) have suggested the existence of a stellar mass-stellar metallicity relation (MZR), which is shown to be universal for different types of galaxies over a large range of stell
One of the fundamental tasks of dynamical astronomy is to infer the distribution of mass in a stellar system from a snapshot of the positions and velocities of its stars. The usual approach to this task (e.g., Schwarzschilds method) involves fitting
We present continuum and molecular line observations at 230 GHz and 345 GHz from the Sub-millimeter Array (SMA) toward three protostars in the Perseus L1448N region. The data are from the large project Mass Assembly of Stellar Systems and their Evolu
Halo stars orbit within the potential of the Milky Way and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively upon assumptions made on the density and the vel
We investigate the formation of the stellar halos of four simulated disk galaxies using high resolution, cosmological SPH + N-Body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in gala