ﻻ يوجد ملخص باللغة العربية
Let $(X,d,mu)$ be a metric measure space satisfying a $Q$-doubling condition, $Q>1$, and an $L^2$-Poincar{e} inequality. Let $mathscr{L}=mathcal{L}+V$ be a Schrodinger operator on $X$, where $mathcal{L}$ is a non-negative operator generalized by a Dirichlet form, and $V$ is a non-negative Muckenhoupt weight that satisfies a reverse Holder condition $RH_q$ for some $qge (Q+1)/2$. We show that a solution to $(mathscr{L}-partial_t^2)u=0$ on $Xtimes mathbb{R}_+$ satisfies the Carleson condition, $$sup_{B(x_B,r_B)}frac{1}{mu(B(x_B,r_B))} int_{0}^{r_B} int_{B(x_B,r_B)} |t abla u(x,t)|^2 frac{mathrm{d}mumathrm{d} t}{t}<infty,$$ if and only if, $u$ can be represented as the Poisson integral of the Schrodinger operator $mathscr{L}$ with trace in the BMO space associated with $mathscr{L}$.
Let $mathcal{L}$ be a Schrodinger operator of the form $mathcal{L}=-Delta+V$ acting on $L^2(mathbb R^n)$ where the nonnegative potential $V$ belongs to the reverse Holder class ${RH}_q$ for some $qgeq (n+1)/2$. Let ${CMO}_{mathcal{L}}(mathbb{R}^n)$ d
Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary
Considering the second boundary value problem of the Lagrangian mean curvature equation, we obtain the existence and uniqueness of the smooth uniformly convex solution, which generalizes the Brendle-Warrens theorem about minimal Lagrangian diffeomorphism in Euclidean metric space.
In this paper we consider the initial boundary value problem (IBVP) for the nonlinear biharmonic Schrodinger equation posed on a bounded interval $(0,L)$ with non-homogeneous Navier or Dirichlet boundary conditions, respectively. For Navier boundary
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri