ﻻ يوجد ملخص باللغة العربية
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Dirich-let problem for Laplaces equation, its implementation is rather easy. The definition of the random walk is based on a new mean value formula for the heat equation. The convergence results and numerical examples permit to emphasize the efficiency and accuracy of the algorithm.
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(
The solution of Kardar-Parisi-Zhang equation (KPZ equation) is solved formally via Cole-Hopf transformation $h=log u$, where $u$ is the solution of multiplicative stochastic heat equation(SHE). In earlier works by Chatterjee and Dunlap, Caravenna, Su
We present a non-iterative algorithm to reconstruct the isotropic acoustic wave speed from the measurement of the Neumann-to-Dirichlet map. The algorithm is designed based on the boundary control method and involves only computations that are stable.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e