ﻻ يوجد ملخص باللغة العربية
We present a public code to generate random fields with an arbitrary probability distribution function (PDF) and an arbitrary correlation function. The algorithm is cosmology-independent, applicable to any stationary stochastic process over a three dimensional grid. We implement it in the case of the matter density field, showing its benefits over the lognormal approximation, which is often used in cosmology for generation of mock catalogues. We find that the covariance of the power spectrum from the new fast realizations is more accurate than that from a lognormal model. As a proof of concept, we also apply the new simulation scheme to the divergence of the Lagrangian displacement field. We find that information from the correlation function and the PDF of the displacement-divergence provides modest improvement over other standard analytical techniques to describe the particle field in the simulation. This suggests that further progress in this direction should come from multi-scale or non-local properties of the initial matter distribution.
The quark propagator is studied under a truncation scheme beyond the rainbow approximation by dressing the quark-gluon vertex non-perturbatively. It is found that, in the chiral limit with dynamical symmetry breaking, the dynamical quark mass and the
Redshift space distortions privilege the location of the observer in cosmological redshift surveys, breaking the translational symmetry of the underlying theory. This violation of statistical homogeneity has consequences for the modeling of clusterin
In this paper we apply Markovian approximation of the fractional Brownian motion (BM), known as the Dobric-Ojeda (DO) process, to the fractional stochastic volatility model where the instantaneous variance is modelled by a lognormal process with drif
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio
In gravitationally stratified fluids, length scales are normally much greater in the horizontal direction than in the vertical one. When modelling these fluids it can be advantageous to use the hydrostatic approximation, which filters out vertically