ﻻ يوجد ملخص باللغة العربية
In this paper we apply Markovian approximation of the fractional Brownian motion (BM), known as the Dobric-Ojeda (DO) process, to the fractional stochastic volatility model where the instantaneous variance is modelled by a lognormal process with drift and fractional diffusion. Since the DO process is a semi-martingale, it can be represented as an Ito diffusion. It turns out that in this framework the process for the spot price $S_t$ is a geometric BM with stochastic instantaneous volatility $sigma_t$, the process for $sigma_t$ is also a geometric BM with stochastic speed of mean reversion and time-dependent colatility of volatility, and the supplementary process $calV_t$ is the Ornstein-Uhlenbeck process with time-dependent coefficients, and is also a function of the Hurst exponent. We also introduce an adjusted DO process which provides a uniformly good approximation of the fractional BM for all Hurst exponents $H in [0,1]$ but requires a complex measure. Finally, the characteristic function (CF) of $log S_t$ in our model can be found in closed form by using asymptotic expansion. Therefore, pricing options and variance swaps (by using a forward CF) can be done via FFT, which is much easier than in rough volatility models.
The recently developed rough Bergomi (rBergomi) model is a rough fractional stochastic volatility (RFSV) model which can generate more realistic term structure of at-the-money volatility skews compared with other RFSV models. However, its non-Markovi
We build a sequence of empirical measures on the space D(R_+,R^d) of R^d-valued c`adl`ag functions on R_+ in order to approximate the law of a stationary R^d-valued Markov and Feller process (X_t). We obtain some general results of convergence of thi
In this paper, we study the asymptotic behaviors of implied volatility of an affine jump-diffusion model. Let log stock price under risk-neutral measure follow an affine jump-diffusion model, we show that an explicit form of moment generating functio
In this paper we consider a variation of the Mertons problem with added stochastic volatility and finite time horizon. It is known that the corresponding optimal control problem may be reduced to a linear parabolic boundary problem under some assumpt
We propose three different data-driven approaches for pricing European-style call options using supervised machine-learning algorithms. These approaches yield models that give a range of fair prices instead of a single price point. The performance of