ﻻ يوجد ملخص باللغة العربية
In the first part of this paper, we will consider minimizing configurations of the Oseen-Frank energy functional $E(n, m)$ for a biaxial nematics $(n, m):Omegato mathbb S^2times mathbb S^2$ with $ncdot m=0$ in dimension three, and establish that it is smooth off a closed set of $1$-dimension Hausdorff measure zero. In the second part, we will consider a simplified Ericksen-Leslie system for biaxial nematics $(n, m)$ in a two dimensional domain and establish the existence of a unique global weak solution $(u, n, m)$ that is smooth off at most finitely many singular times for any initial and boundary data of finite energy. They extend to biaxial nematics of earlier results corresponding to minimizing uniaxial nematics by Hardt-Kindelerherer-Lin cite{HKL} and a simplified hydrodynamics of uniaxial liquid crystal by Lin-Lin-Wang cite{LLW10} respectively.
We consider the simplified Ericksen-Leslie model in three dimensional bounded Lipschitz domains. Applying a semilinear approach, we prove local and global well-posedness (assuming a smallness condition on the initial data) in critical spaces for init
We study a PDE system describing the motion of liquid crystals by means of the $Q-$tensor description for the crystals coupled with the incompressible Navier-Stokes system. Using the method of Fourier splitting, we show that solutions of the system t
In this paper we study qualitative properties of global minimizers of the Ginzburg-Landau energy which describes light-matter interaction in the theory of nematic liquid crystals near the Friedrichs transition. This model is depends on two parameters
In this paper, we study the Cauchy problem of the Poiseuille flow of full Ericksen-Leslie model for nematic liquid crystals. The model is a coupled system of a parabolic equation for the velocity and a quasilinear wave equation for the director. For
We study global minimizers of an energy functional arising as a thin sample limit in the theory of light-matter interaction in nematic liquid crystals. We show that depending on the parameters various defects are predicted by the model. In particular