ﻻ يوجد ملخص باللغة العربية
We consider the simplified Ericksen-Leslie model in three dimensional bounded Lipschitz domains. Applying a semilinear approach, we prove local and global well-posedness (assuming a smallness condition on the initial data) in critical spaces for initial data in $L^3_{sigma}$ for the fluid and $W^{1,3}$ for the director field. The analysis of such models, so far, has been restricted to domains with smooth boundaries.
In the first part of this paper, we will consider minimizing configurations of the Oseen-Frank energy functional $E(n, m)$ for a biaxial nematics $(n, m):Omegato mathbb S^2times mathbb S^2$ with $ncdot m=0$ in dimension three, and establish that it i
In this paper we study qualitative properties of global minimizers of the Ginzburg-Landau energy which describes light-matter interaction in the theory of nematic liquid crystals near the Friedrichs transition. This model is depends on two parameters
In this paper, we study the Cauchy problem of the Poiseuille flow of full Ericksen-Leslie model for nematic liquid crystals. The model is a coupled system of a parabolic equation for the velocity and a quasilinear wave equation for the director. For
We study global minimizers of an energy functional arising as a thin sample limit in the theory of light-matter interaction in nematic liquid crystals. We show that depending on the parameters various defects are predicted by the model. In particular
This paper is concerned with boundary regularity estimates in the homogenization of elliptic equations with rapidly oscillating and high-contrast coefficients. We establish uniform nontangential-maximal-function estimates for the Dirichlet, regularit