ترغب بنشر مسار تعليمي؟ اضغط هنا

Changes of Magnetism in a Magnetic Insulator due to Proximity to a Topological Insulator

86   0   0.0 ( 0 )
 نشر من قبل Tao Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter reports the modification of magnetism in a magnetic insulator Y3Fe5O12 thin film by topological surface states (TSS) in an adjacent topological insulator Bi2Se3 thin film. Ferromagnetic resonance measurements show that the TSS in Bi2Se3 produces a perpendicular magnetic anisotropy, results in a decrease in the gyromagnetic ratio, and enhances the damping in Y3Fe5O12. Such TSS-induced changes become more pronounced as the temperature decreases from 300 K to 50 K. These results suggest a completely new approach for control of magnetism in magnetic thin films.



قيم البحث

اقرأ أيضاً

The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to graphene by means of proximity effect. Here we report the observations of the topological proximity effect in the graphene-topological insulator Bi2Se3 heterojunctions via magnetotransport measurements. The coupling between the p_z orbitals of graphene and the p orbitals of surface states on the Bi2Se3 bottom surface can be enhanced by applying perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. An obvious resistivity dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with the theoretical predictions of the distorted Dirac bands with unique spin textures inherited from Bi2Se3 surface states.
Three-dimensional topological insulators (TIs) have emerged as a unique state of quantum matter and generated enormous interests in condensed matter physics. The surfaces of a three dimensional (3D) TI are composed of a massless Dirac cone, which is characterized by the Z2 topological invariant. Introduction of magnetism on the surface of TI is essential to realize the quantum anomalous Hall effect (QAHE) and other novel magneto-electric phenomena. Here, by using a combination of first principles calculations, magneto-transport, angle-resolved photoemission spectroscopy (ARPES), and time resolved ARPES (tr-ARPES), we study the electronic properties of Gadolinium (Gd) doped Sb2Te3. Our study shows that Gd doped Sb2Te3 is a spin-orbit-induced bulk band-gap material, whose surface is characterized by a single topological surface state. We further demonstrate that introducing diluted 4f-electron magnetism into the Sb2Te3 topological insulator system by the Gd doping creates surface magnetism in this system. Our results provide a new platform to investigate the interaction between dilute magnetism and topology in doped topological materials.
In the following paper we investigate the critical temperature $T_c$ behavior in the two-dimensional S/TI (S denotes superconductor and TI - topological insulator) junction with a proximity induced in-plane helical magnetization in the TI surface. Th e calculations of $T_c$ are performed using the general self-consistent approach based on the Usadel equations in Matsubara Greens functions technique. We show that the presence of the helical magnetization leads to the nonmonotonic behavior of the critical temperature as a function of the topological insulator layer thickness.
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in a TI can develop an order parameter with a $p$-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi$_2$Se$_3$, proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi$_2$Se$_3$ that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
Inducing long-range magnetic order in three-dimensional topological insulators can gap the Diraclike metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topologi cal phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. In this review, we focus on one strategy, inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. We discuss the unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators. We also highlight some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, and we conclude with an outlook on remaining challenges and opportunities in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا