ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning and Optimization of Blackbox Combinatorial Solvers in Neural Networks

126   0   0.0 ( 0 )
 نشر من قبل T.J. Wilder
 تاريخ النشر 2020
والبحث باللغة English
 تأليف T.J. Wilder




اسأل ChatGPT حول البحث

The use of blackbox solvers inside neural networks is a relatively new area which aims to improve neural network performance by including proven, efficient solvers for complex problems. Existing work has created methods for learning networks with these solvers as components while treating them as a blackbox. This work attempts to improve upon existing techniques by optimizing not only over the primary loss function, but also over the performance of the solver itself by using Time-cost Regularization. Additionally, we propose a method to learn blackbox parameters such as which blackbox solver to use or the heuristic function for a particular solver. We do this by introducing the idea of a hyper-blackbox which is a blackbox around one or more internal blackboxes.



قيم البحث

اقرأ أيضاً

We present Ecole, a new library to simplify machine learning research for combinatorial optimization. Ecole exposes several key decision tasks arising in general-purpose combinatorial optimization solvers as control problems over Markov decision proc esses. Its interface mimics the popular OpenAI Gym library and is both extensible and intuitive to use. We aim at making this library a standardized platform that will lower the bar of entry and accelerate innovation in the field. Documentation and code can be found at https://www.ecole.ai.
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithm s instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
Machine Learning (ML) can help solve combinatorial optimization (CO) problems better. A popular approach is to use a neural net to compute on the parameters of a given CO problem and extract useful information that guides the search for good solution s. Many CO problems of practical importance can be specified in a matrix form of parameters quantifying the relationship between two groups of items. There is currently no neural net model, however, that takes in such matrix-style relationship data as an input. Consequently, these types of CO problems have been out of reach for ML engineers. In this paper, we introduce Matrix Encoding Network (MatNet) and show how conveniently it takes in and processes parameters of such complex CO problems. Using an end-to-end model based on MatNet, we solve asymmetric traveling salesman (ATSP) and flexible flow shop (FFSP) problems as the earliest neural approach. In particular, for a class of FFSP we have tested MatNet on, we demonstrate a far superior empirical performance to any methods (neural or not) known to date.
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose a new graph convolutional neural network model for learning branch-and-bound variable selection policies, which leverages the natural variable-cons traint bipartite graph representation of mixed-integer linear programs. We train our model via imitation learning from the strong branching expert rule, and demonstrate on a series of hard problems that our approach produces policies that improve upon state-of-the-art machine-learning methods for branching and generalize to instances significantly larger than seen during training. Moreover, we improve for the first time over expert-designed branching rules implemented in a state-of-the-art solver on large problems. Code for reproducing all the experiments can be found at https://github.com/ds4dm/learn2branch.
We demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum c ut, minimum vertex cover, maximum independent set, as well as Ising spin glasses and higher-order generalizations thereof in the form of polynomial unconstrained binary optimization problems. We apply a relaxation strategy to the problem Hamiltonian to generate a differentiable loss function with which we train the graph neural network and apply a simple projection to integer variables once the unsupervised training process has completed. We showcase our approach with numerical results for the canonical maximum cut and maximum independent set problems. We find that the graph neural network optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems with millions of variables.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا