ﻻ يوجد ملخص باللغة العربية
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose a new graph convolutional neural network model for learning branch-and-bound variable selection policies, which leverages the natural variable-constraint bipartite graph representation of mixed-integer linear programs. We train our model via imitation learning from the strong branching expert rule, and demonstrate on a series of hard problems that our approach produces policies that improve upon state-of-the-art machine-learning methods for branching and generalize to instances significantly larger than seen during training. Moreover, we improve for the first time over expert-designed branching rules implemented in a state-of-the-art solver on large problems. Code for reproducing all the experiments can be found at https://github.com/ds4dm/learn2branch.
We demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum c
Inspired by convolutional neural networks on 1D and 2D data, graph convolutional neural networks (GCNNs) have been developed for various learning tasks on graph data, and have shown superior performance on real-world datasets. Despite their success,
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an excitin
Graph convolution networks have recently garnered a lot of attention for representation learning on non-Euclidean feature spaces. Recent research has focused on stacking multiple layers like in convolutional neural networks for the increased expressi
Machine Learning (ML) can help solve combinatorial optimization (CO) problems better. A popular approach is to use a neural net to compute on the parameters of a given CO problem and extract useful information that guides the search for good solution