ﻻ يوجد ملخص باللغة العربية
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, parameterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
In this work, a new generic parameterisation for $f(R)$ theories is presented. Our proposal for a new equation of state can reproduce an $f(R)$-like evolution that describes late and early time universe within 1-$sigma$ C.L when we use a combination
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy.
We study the amplification of the electromagnetic fluctuations, and the production of seeds for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known p
Bimetric gravity is a ghost-free and observationally viable extension of general relativity, exhibiting both a massless and a massive graviton. The observed abundances of light elements can be used to constrain the expansion history of the Universe a
The modified gravity is considered to be one of possible explanations of the accelerated expansions of the present and the early universe. We study effects of the modified gravity on big bang nucleosynthesis (BBN). If effects of the modified gravity