ﻻ يوجد ملخص باللغة العربية
We study the topological phase transitions of a Kitaev chain in the presence of geometric frustration caused by the addition of a single long-range hopping. The latter condition defines a legged-ring geometry (Kitaev tie) lacking of translational invariance. In order to study the topological properties of the system, we generalize the transfer matrix approach through which the emergence of Majorana modes is studied. We find that geometric frustration gives rise to a topological phase diagram in which non-trivial phases alternate with trivial ones at varying the range of the extra hopping and the chemical potential. Frustration effects are also studied in a translational invariant model consisting of multiple-ties. In the latter system, the translational invariance permits to use the topological bulk invariant to determine the phase diagram and bulk-edge correspondence is recovered. It has been demonstrated that geometric frustration effects persist even when translational invariance is restored. These findings are relevant in studying the topological phases of looped ballistic conductors.
In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux i
We study planar rectangular-like arrays composed by macroscopic dipoles (magnetic bars with size around a few centimeters) separated by lattice spacing a and b along each direction. Physical behavior of such macroscopic artificial spin ice (MASI) sys
We describe a superconducting three-terminal device that uses a simple geometric effect known as current crowding to sense the flow of current and actuate a readout signal. The device consists of a Y-shaped current combiner, with two currents (sense
As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type