ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference effects in isolated Josephson junction arrays with geometric symmetries

87   0   0.0 ( 0 )
 نشر من قبل Dmitri A. Ivanov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).



قيم البحث

اقرأ أيضاً

We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l imit of small coupling to the environment it exhibits a non-monotonous behavior with a maximum voltage followed by a parametrically large region where $Vpropto 1/I$. We argue that its experimental measurement provides a direct probe of the amplitude of the quantum transitions in constituting Josephson circuits and thus allows their full characterization.
66 - Frank Gibbons , A. Gongora-T , 1998
We study the dynamic response to external currents of periodic arrays of Josephson junctions, in a resistively capacitively shunted junction (RCSJ) model, including full capacitance-matrix effects}. We define and study three different models of the c apacitance matrix $C_{vec{r},vec{r}}$: Model A includes only mutual capacitances; Model B includes mutual and self capacitances, leading to exponential screening of the electrostatic fields; Model C includes a dense matrix $C_{vec{r},vec{r}}$ that is constructed approximately from superposition of an exact analytic solution for the capacitance between two disks of finite radius and thickness. In the latter case the electrostatic fields decay algebraically. For comparison, we have also evaluated the full capacitance matrix using the MIT fastcap algorithm, good for small lattices, as well as a corresponding continuum effective-medium analytic evaluation of a finite voltage disk inside a zero-potential plane. In all cases the effective $C_{vec{r},vec{r}}$ decays algebraically with distance, with different powers. We have then calculated current voltage characteristics for DC+AC currents for all models. We find that there are novel giant capacitive fractional steps in the I-Vs for Models B and C, strongly dependent on the amount of screening involved. We find that these fractional steps are quantized in units inversely proportional to the lattice sizes and depend on the properties of $C_{vec{r},vec{r}}$. We also show that the capacitive steps are not related to vortex oscillations but to localized screened phase-locking of a few rows in the lattice. The possible experimental relevance of these results is also discussed.
390 - V. Humbert , M. Aprili , J. Hammer 2012
An extended Josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. The superconducting phase difference across the junction determines the supercurrent as well as its spatial distribution. Both, an external magnetic field and a resonant cavity intrafield produce a spatial modification of the superconducting phase along the junction. The interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the Josephson phase from 1 to -0.5. This enables static and dynamic control over the junction in the ultra-strong coupling regime.
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz, and integrate these components to implement both a monolithic amplitude/phase vector modulator and a quadrature mixer. The devices are act uated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Superconducting electronic devices have re-emerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation and long coherence times. An ultimate demonstration of coherence is lasing. We use one of th e fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multi-mode superconducting cavity. A dc voltage bias to the junction provides a source of microwave photons, while the circuits nonlinearity allows for efficient down-conversion of higher order Josephson frequencies down to the cavitys fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا