ﻻ يوجد ملخص باللغة العربية
We consider three-dimensional (3D) localization and imaging of space debris from only one two-dimensional (2D) snapshot image. The technique involves an optical imager that exploits off-center image rotation to encode both the lateral and depth coordinates of point sources, with the latter being encoded in the angle of rotation of the PSF. We formulate 3D localization into a large-scale sparse 3D inverse problem in the discretized form. A recently developed penalty called continuous exact l0 (CEL0) is applied in this problem for the Gaussian noise model. Numerical experiments and comparisons illustrate the efficiency of the algorithm.
We present a virtual image refocusing method over an extended depth of field (DOF) enabled by cascaded neural networks and a double-helix point-spread function (DH-PSF). This network model, referred to as W-Net, is composed of two cascaded generator
A new method is presented for determining the Point Spread Function (PSF) of images that lack bright and isolated stars. It is based on the same principles as the MCS (Magain, Courbin, Sohy, 1998) image deconvolution algorithm. It uses the informatio
Optimization-based samplers such as randomize-then-optimize (RTO) [2] provide an efficient and parallellizable approach to solving large-scale Bayesian inverse problems. These methods solve randomly perturbed optimization problems to draw samples fro
The recent application of Fourier Based Iterative Reconstruction Method (FIRM) has made it possible to achieve high-quality 2D images from a fan beam Computed Tomography (CT) scan with a limited number of projections in a fast manner. The proposed me
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Ni