ﻻ يوجد ملخص باللغة العربية
The probability distribution of a function of a subsystem conditioned on the value of the function of the whole, in the limit when the ratio of their values goes to zero, has a limit law: It equals the unconditioned marginal probability distribution weighted by an exponential factor whose exponent is uniquely determined by the condition. We apply this theorem to explain the canonical equilibrium ensemble of a system in contact with a heat reservoir. Since the theorem only requires analysis at the level of the function of the subsystem and reservoir, it is applicable even without the knowledge of the composition of the reservoir itself, which extends the applicability of the canonical ensemble. Furthermore, we generalize our theorem to a model with strong interaction that contributes an additional term to the exponent, which is beyond the typical case of approximately additive functions. This result is new in both physics and mathematics, as a theory for the Gibbs conditioning principle for strongly correlated systems. A corollary provides a precise formulation of what a temperature bath is in probabilistic term
We find the asymptotic behaviors of Toeplitz determinants with symbols which are a sum of two contributions: one analytical and non-zero function in an annulus around the unit circle, and the other proportional to a Dirac delta function. The formulas
This article is mostly based on a talk I gave at the March 2021 meeting (virtual) of the American Physical Society on the occasion of receiving the Dannie Heineman prize for Mathematical Physics from the American Institute of Physics and the American
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large dev
We use a noncommutative generalization of Fourier analysis to define a broad class of pseudo-probability representations, which includes the known bosonic and discrete Wigner functions. We characterize the groups of quantum unitary operations which c
A finite dimensional quantum system for which the quantum chaos conjecture applies has eigenstates, which show the same statistical properties than the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabili