ترغب بنشر مسار تعليمي؟ اضغط هنا

Age-Based Coded Computation for Bias Reduction in Distributed Learning

171   0   0.0 ( 0 )
 نشر من قبل Baturalp Buyukates
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Coded computation can be used to speed up distributed learning in the presence of straggling workers. Partial recovery of the gradient vector can further reduce the computation time at each iteration; however, this can result in biased estimators, which may slow down convergence, or even cause divergence. Estimator bias will be particularly prevalent when the straggling behavior is correlated over time, which results in the gradient estimators being dominated by a few fast servers. To mitigate biased estimators, we design a $timely$ dynamic encoding framework for partial recovery that includes an ordering operator that changes the codewords and computation orders at workers over time. To regulate the recovery frequencies, we adopt an $age$ metric in the design of the dynamic encoding scheme. We show through numerical results that the proposed dynamic encoding strategy increases the timeliness of the recovered computations, which as a result, reduces the bias in model updates, and accelerates the convergence compared to the conventional static partial recovery schemes.



قيم البحث

اقرأ أيضاً

210 - Royee Yosibash , Ram Zamir 2021
Distributed computation is a framework used to break down a complex computational task into smaller tasks and distributing them among computational nodes. Erasure correction codes have recently been introduced and have become a popular workaround to the well known ``straggling nodes problem, in particular, by matching linear coding for linear computation tasks. It was observed that decoding tends to amplify the computation ``noise, i.e., the numerical errors at the computation nodes. We propose taking advantage of the case that more nodes return than minimally required. We show how a clever construction of a polynomial code, inspired by recent results on robust frames, can significantly reduce the amplification of noise, and achieves graceful degradation with the number of straggler nodes.
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads. Recently, Ye and Abbe [ICML 2018] proposed a coding-theoretic paradigm to characterize a fundamental trade-off between computation load per worker, communication overhead per worker, and straggler tolerance. However, their proposed coding schemes suffer from heavy decoding complexity and poor numerical stability. In this paper, we develop a communication-efficient gradient coding framework to overcome these drawbacks. Our proposed framework enables using any linear code to design the encoding and decoding functions. When a particular code is used in this framework, its block-length determines the computation load, dimension determines the communication overhead, and minimum distance determines the straggler tolerance. The flexibility of choosing a code allows us to gracefully trade-off the straggler threshold and communication overhead for smaller decoding complexity and higher numerical stability. Further, we show that using a maximum distance separable (MDS) code generated by a random Gaussian matrix in our framework yields a gradient code that is optimal with respect to the trade-off and, in addition, satisfies stronger guarantees on numerical stability as compared to the previously proposed schemes. Finally, we evaluate our proposed framework on Amazon EC2 and demonstrate that it reduces the average iteration time by 16% as compared to prior gradient coding schemes.
Distributed implementations are crucial in speeding up large scale machine learning applications. Distributed gradient descent (GD) is widely employed to parallelize the learning task by distributing the dataset across multiple workers. A significant performance bottleneck for the per-iteration completion time in distributed synchronous GD is $straggling$ workers. Coded distributed computation techniques have been introduced recently to mitigate stragglers and to speed up GD iterations by assigning redundant computations to workers. In this paper, we consider gradient coding (GC), and propose a novel dynamic GC scheme, which assigns redundant data to workers to acquire the flexibility to dynamically choose from among a set of possible codes depending on the past straggling behavior. In particular, we consider GC with clustering, and regulate the number of stragglers in each cluster by dynamically forming the clusters at each iteration; hence, the proposed scheme is called $GC$ $with$ $dynamic$ $clustering$ (GC-DC). Under a time-correlated straggling behavior, GC-DC gains from adapting to the straggling behavior over time such that, at each iteration, GC-DC aims at distributing the stragglers across clusters as uniformly as possible based on the past straggler behavior. For both homogeneous and heterogeneous worker models, we numerically show that GC-DC provides significant improvements in the average per-iteration completion time without an increase in the communication load compared to the original GC scheme.
This paper has two contributions. First, we propose a novel coded matrix multiplication technique called Generalized PolyDot codes that advances on existing methods for coded matrix multiplication under storage and communication constraints. This tec hnique uses garbage alignment, i.e., aligning computations in coded computing that are not a part of the desired output. Generalized PolyDot codes bridge between Polynomial codes and MatDot codes, trading off between recovery threshold and communication costs. Second, we demonstrate that Generalized PolyDot can be used for training large Deep Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires us to address three additional challenges: (i) prohibitively large overhead of coding the weight matrices in each layer of the DNN at each iteration; (ii) nonlinear operations during training, which are incompatible with linear coding; and (iii) not assuming presence of an error-free master node, requiring us to architect a fully decentralized implementation without any single point of failure. We allow all primary DNN training steps, namely, matrix multiplication, nonlinear activation, Hadamard product, and update steps as well as the encoding/decoding to be error-prone. We consider the case of mini-batch size $B=1$, as well as $B>1$, leveraging coded matrix-vector products, and matrix-matrix products respectively. The problem of DNN training under soft-errors also motivates an interesting, probabilistic error model under which a real number $(P,Q)$ MDS code is shown to correct $P-Q-1$ errors with probability $1$ as compared to $lfloor frac{P-Q}{2} rfloor$ for the more conventional, adversarial error model. We also demonstrate that our proposed strategy can provide unbounded gains in error tolerance over a competing replication strategy and a preliminary MDS-code-based strategy for both these error models.
A distributed computing scenario is considered, where the computational power of a set of worker nodes is used to perform a certain computation task over a dataset that is dispersed among the workers. Lagrange coded computing (LCC), proposed by Yu et al., leverages the well-known Lagrange polynomial to perform polynomial evaluation of the dataset in such a scenario in an efficient parallel fashion while keeping the privacy of data amidst possible collusion of workers. This solution relies on quantizing the data into a finite field, so that Shamirs secret sharing, as one of its main building blocks, can be employed. Such a solution, however, is not properly scalable with the size of dataset, mainly due to computation overflows. To address such a critical issue, we propose a novel extension of LCC to the analog domain, referred to as analog LCC (ALCC). All the operations in the proposed ALCC protocol are done over the infinite fields of R/C but for practical implementations floating-point numbers are used. We characterize the privacy of data in ALCC, against any subset of colluding workers up to a certain size, in terms of the distinguishing security (DS) and the mutual information security (MIS) metrics. Also, the accuracy of outcome is characterized in a practical setting assuming operations are performed using floating-point numbers. Consequently, a fundamental trade-off between the accuracy of the outcome of ALCC and its privacy level is observed and is numerically evaluated. Moreover, we implement the proposed scheme to perform matrix-matrix multiplication over a batch of matrices. It is observed that ALCC is superior compared to the state-of-the-art LCC, implemented using fixed-point numbers, assuming both schemes use an equal number of bits to represent data symbols.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا