ﻻ يوجد ملخص باللغة العربية
This note derives the various forms of entropy of systems subject to Olbert distributions (generalized Lorentzian probability distributions known as $kappa$-distributions) which are frequently observed particularly in high temperature plasmas. The general expression of the partition function in such systems is given as well in a form similar to the Boltzmann-Gibbs probability distribution, including a possible exponential high energy truncation. We find the representation of the mean energy as function of probability, and provide the implicit form of Olbert (Lorentzian) entropy as well as its high temperature limit. The relation to phase space density of states is obtained. We then find the entropy as function of probability, an expression which is fundamental to statistical mechanics and here to its Olbertian version. Lorentzian systems through internal collective interactions cause correlations which add to the entropy. Fermi systems do not obey Olbert statistics, while Bose systems might at temperatures sufficiently far from zero.
The quantum version of Olberts kappa distribution applicable to fermions is obtained. Its construction is straightforward but requires recognition of the differences in the nature of states separated by Fermi momenta. Its complement, the bosonic vers
The distribution of frequency counts of distinct words by length in a languages vocabulary will be analyzed using two methods. The first, will look at the empirical distributions of several languages and derive a distribution that reasonably explains
Superstatistics [C. Beck and E.G.D. Cohen, Physica A 322, 267 (2003)] is a formalism aimed at describing statistical properties of a generic extensive quantity E in complex out-of-equilibrium systems in terms of a superposition of equilibrium canonic
Extreme events taking place on networks are not uncommon. We show that it is possible to manipulate the extreme events occurrence probabilities and its distribution over the nodes on scale-free networks by tuning the nodal capacity. This can be used
In a recent paper [textit{M. Cristelli, A. Zaccaria and L. Pietronero, Phys. Rev. E 85, 066108 (2012)}], Cristelli textit{et al.} analysed relation between skewness and kurtosis for complex dynamical systems and identified two power-law regimes of no