ﻻ يوجد ملخص باللغة العربية
In a recent paper [textit{M. Cristelli, A. Zaccaria and L. Pietronero, Phys. Rev. E 85, 066108 (2012)}], Cristelli textit{et al.} analysed relation between skewness and kurtosis for complex dynamical systems and identified two power-law regimes of non-Gaussianity, one of which scales with an exponent of 2 and the other is with $4/3$. Finally the authors concluded that the observed relation is a universal fact in complex dynamical systems. Here, we test the proposed universal relation between skewness and kurtosis with large number of synthetic data and show that in fact it is not universal and originates only due to the small number of data points in the data sets considered. The proposed relation is tested using two different non-Gaussian distributions, namely $q$-Gaussian and Levy distributions. We clearly show that this relation disappears for sufficiently large data sets provided that the second moment of the distribution is finite. We find that, contrary to the claims of Cristelli textit{et al.} regarding a power-law scaling regime, kurtosis saturates to a single value, which is of course different from the Gaussian case ($K=3$), as the number of data is increased. On the other hand, if the second moment of the distribution is infinite, then the kurtosis seems to never converge to a single value. The converged kurtosis value for the finite second moment distributions and the number of data points needed to reach this value depend on the deviation of the original distribution from the Gaussian case. We also argue that the use of kurtosis to compare distributions to decide which one deviates from the Gaussian more can lead to incorrect results even for finite second moment distributions for small data sets, whereas it is totally misleading for infinite second moment distributions where the difference depends on $N$ for all finite $N$.
We investigate the use of data-driven likelihoods to bypass a key assumption made in many scientific analyses, which is that the true likelihood of the data is Gaussian. In particular, we suggest using the optimization targets of flow-based generativ
We propose a method to obtain phase portraits for stochastic systems. Starting from the Fokker-Planck equation, we separate the dynamics into a convective and a diffusive part. We show that stable and unstable fixed points of the convective field cor
Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the `curse of dimensionality in high-dimensi
An empirical analysis of interest rates in money and capital markets is performed. We investigate a set of 34 different weekly interest rate time series during a time period of 16 years between 1982 and 1997. Our study is focused on the collective be
Methods. We perform numerical simulations of the evolution of the cosmic web for the conventional LCDM model. The simulations cover a wide range of box sizes L = 256 - 4000 Mpc/h, mass and force resolutions and epochs from very early moments z = 30 t