ﻻ يوجد ملخص باللغة العربية
Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms. Review summarization aims at generating a concise summary that describes the key opinions and sentiment of a review, while sentiment classification aims to predict a sentiment label indicating the sentiment attitude of a review. To effectively leverage the shared sentiment information in both review summarization and sentiment classification tasks, we propose a novel dual-view model that jointly improves the performance of these two tasks. In our model, an encoder first learns a context representation for the review, then a summary decoder generates a review summary word by word. After that, a source-view sentiment classifier uses the encoded context representation to predict a sentiment label for the review, while a summary-view sentiment classifier uses the decoder hidden states to predict a sentiment label for the generated summary. During training, we introduce an inconsistency loss to penalize the disagreement between these two classifiers. It helps the decoder to generate a summary to have a consistent sentiment tendency with the review and also helps the two sentiment classifiers learn from each other. Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
Person Re-identification (ReID) aims at matching a person of interest across images. In convolutional neural networks (CNNs) based approaches, loss design plays a role of metric learning which guides the feature learning process to pull closer featur
With the rapid increase of multimedia data, a large body of literature has emerged to work on multimodal summarization, the majority of which target at refining salient information from textual and visual modalities to output a pictorial summary with
We study the problem of performing automatic stance classification on social media with neural architectures such as BERT. Although these architectures deliver impressive results, their level is not yet comparable to the one of humans and they might
Recently, various neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries by learning to map input text to output text. At a high level, such neural models can freel
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interp