ﻻ يوجد ملخص باللغة العربية
Person Re-identification (ReID) aims at matching a person of interest across images. In convolutional neural networks (CNNs) based approaches, loss design plays a role of metric learning which guides the feature learning process to pull closer features of the same identity and to push far apart features of different identities. In recent years, the combination of classification loss and triplet loss achieves superior performance and is predominant in ReID. In this paper, we rethink these loss functions within a generalized formulation and argue that triplet-based optimization can be viewed as a two-class subsampling classification, which performs classification over two sampled categories based on instance similarities. Furthermore, we present a case study which demonstrates that increasing the number of simultaneously considered instance classes significantly improves the ReID performance, since it is aligned better with the ReID test/inference process. With the multi-class subsampling classification incorporated, we provide a strong baseline which achieves the state-of-the-art performance on the benchmark person ReID datasets. Finally, we propose a new meta prototypical N-tuple loss for more efficient multi-class subsampling classification. We aim to inspire more new loss designs in the person ReID field.
Unsupervised person re-identification (re-ID) remains a challenging task. While extensive research has focused on the framework design or loss function, we show in this paper that sampling strategy plays an equally important role. We analyze the reas
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images fro
Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few fram
Person re-identification (ReID) is an important task in wide area video surveillance which focuses on identifying people across different cameras. Recently, deep learning networks with a triplet loss become a common framework for person ReID. However
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is n