ترغب بنشر مسار تعليمي؟ اضغط هنا

New Constraints on the Origin of Surface Brightness Profile Breaks of Disk Galaxies from MaNGA

89   0   0.0 ( 0 )
 نشر من قبل Yimeng Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In an effort to probe the origin of surface brightness profile (SBP) breaks widely observed in nearby disk galaxies, we carry out a comparative study of stellar population profiles of 635 disk galaxies selected from the MaNGA spectroscopic survey. We classify our galaxies into single exponential (TI), down-bending (TII) and up-bending (TIII) SBP types, and derive their spin parameters and radial profiles of age/metallicity-sensitive spectral features. Most TII (TIII) galaxies have down-bending (up-bending) star formation rate (SFR) radial profiles, implying that abrupt radial changes of SFR intensities contribute to the formation of both TII and TIII breaks. Nevertheless, a comparison between our galaxies and simulations suggests that stellar migration plays a significant role in weakening down-bending $Sigma_{star}$ profile breaks. While there is a correlation between the break strengths of SBPs and age/metallicity-sensitive spectral features for TII galaxies, no such correlation is found for TIII galaxies, indicating that stellar migration may not play a major role in shaping TIII breaks, as is evidenced by a good correspondence between break strengths of $Sigma_{star}$ and surface brightness profiles of TIII galaxies. We do not find evidence for galaxy spin being a relevant parameter for forming different SBP types, nor do we find significant differences between the asymmetries of galaxies with different SBP types, suggesting that environmental disturbances or satellite accretion in the recent past do not significantly influence the break formation. By dividing our sample into early and late morphological types, we find that galaxies with different SBP types follow nearly the same tight stellar mass-$R_{25}$ relation, which makes the hypothesis that stellar migration alone can transform SBP types from TII to TI and then to TIII highly unlikely.



قيم البحث

اقرأ أيضاً

The Rastall gravity is a modification of Einsteins general relativity, in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is in dispute whether the Rastall gravity is equivalent to the ge neral relativity (GR). In this work, we constrain the theory using the rotation curves of Low Surface Brightness (LSB) spiral galaxies. Through fitting the rotation curves of LSB galaxies, we obtain the parameter $beta$ of the Rastall gravity. The $beta$ values of LSB galaxies satisfy Weak Energy Condition (WEC) and Strong Energy Condition(SEC). Combining the $beta$ values of type Ia supernovae and gravitational lensing of elliptical galaxies on the Rastall gravity, we conclude that the Rastall gravity is equivalent to the general relativity.
Low-surface-brightness galaxies (LSBGs) -- defined as systems that are fainter than the surface-brightness limits of past wide-area surveys -- form the overwhelming majority of galaxies in the dwarf regime (M* < 10^9 MSun). Using NewHorizon, a high-r esolution cosmological simulation, we study the origin of LSBGs and explain why LSBGs at similar stellar mass show the large observed spread in surface brightness. New Horizon galaxies populate a well-defined locus in the surface brightness -- stellar mass plane, with a spread of ~3 mag arcsec^-2, in agreement with deep SDSS Stripe data. Galaxies with fainter surface brightnesses today are born in regions of higher dark-matter density. This results in faster gas accretion and more intense star formation at early epochs. The stronger resultant supernova feedback flattens gas profiles at a faster rate which, in turn, creates shallower stellar profiles (i.e. more diffuse systems) more rapidly. As star formation declines towards late epochs (z<1), the larger tidal perturbations and ram pressure experienced by these systems (due to their denser local environments) accelerate the divergence in surface brightness, by increasing their effective radii and reducing star formation respectively. A small minority of dwarfs depart from the main locus towards high surface brightnesses, making them detectable in past wide surveys. These systems have anomalously high star-formation rates, triggered by recent, fly-by or merger-driven starbursts. We note that objects considered extreme/anomalous at the depth of current datasets, e.g. `ultra-diffuse galaxies, actually dominate the predicted dwarf population and will be routinely visible in future surveys like LSST.
We examine the relation between breaks in the surface brightness profiles and radial abundance gradients within the optical radius in the discs of 134 spiral galaxies from the CALIFA survey. The distribution of the radial abundance (in logarithmic sc ale) in each galaxy was fitted by simple and broken linear relations. The surface brightness profile was fitted assuming pure and broken exponents for the disc. We find that the maximum absolute difference between the abundances in a disc given by broken and pure linear relations is less than 0.05 dex in the majority of our galaxies and exceeds the scatter in abundances for 26 out of 134 galaxies considered. The scatter in abundances around the broken linear relation is close (within a few percent) to that around the pure linear relation. The breaks in the surface brightness profiles are more prominent. The scatter around the broken exponent in a number of galaxies is lower by a factor of two or more than that around the pure exponent. The shapes of the abundance gradients and surface brightness profiles within the optical radius in a galaxy may be different. A pure exponential surface brightness profile may be accompanied by a broken abundance gradient and vise versa. There is no correlation between the break radii of the abundance gradients and surface brightness profiles. Thus, a break in the surface brightness profile does not need to be accompanied by a break in the abundance gradient.
272 - Dong Gao 2010
We study the ages of a large sample (1,802) of nearly face-on disk low surface brightness galaxies (LSBGs) by using the evolutionary population synthesis (EPS) model PEGASE with exponential decreasing star formation rate to fit their multiwavelength spectral energy distributions (SEDs) from far-ultraviolet (FUV) to near-infrared (NIR). The derived ages of LSBGs are 1-5 Gyr for most of the sample no matter the constant or varying dust extinction is adopted, which are similar to most of the previous studies on smaller samples. This means that these LSBGs formed their majority of stars quite recently. However, a small part of the sample (~2-3%) have larger ages as 5-8 Gyr, meaning their major star forming process may occur earlier. At the same time, a large sample (5,886) of high surface brightness galaxies (HSBGs) are selected and studied in the same method for comparisons. The derived ages are 1-5 Gyr for most of the sample (97%) as well. These may mean that probably these LSBGs have no much different star formation history from their HSBGs counterparts. But we should notice that the HSBGs are about 0.2 Gyr younger generally, which could mean that the HSBGs may have more recent star forming activities than the LSBGs.
The faint stellar halos of galaxies contain key information about the oldest stars and the process of galaxy formation. A previous study of stacked SDSS images of disk galaxies has revealed a halo with an abnormally red r-i colour, seemingly inconsis tent with our current understanding of stellar halos. Here, we investigate the statistical properties of the faint envelopes of low surface brightness disk galaxies to look for further support for a red excess. 1510 edge-on low surface brightness galaxies were selected from the SDSS Data Release 5, rescaled to the same apparent size, aligned and stacked. This procedure allows us to reach a surface brightness of mu_g ~ 31 mag arcsec^-2. After a careful assessment of instrumental light scattering effects, we derive median and average radial surface brightness and colour profiles in g,r and i. The sample is then divided into 3 subsamples according to g-r colour. All three samples exhibit a red colour excess in r-i in the thick disk/halo region. The halo colours of the full sample, g-r = 0.60+-0.15 and r-i = 0.80+-0.15, are found to be incompatible with the colours of any normal type of stellar population. The fact that no similar colour anomaly is seen at comparable surface brightness levels along the disk rules out a sky subtraction residual as the source of the extreme colours. A number of possible explanations for these abnormally red halos are discussed. We find that two different scenarios -- dust extinction of extragalactic background light and a stellar population with a very bottom-heavy initial mass function -- appear to be broadly consistent with our observations and with similar red excesses reported in the halos of other types of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا