ترغب بنشر مسار تعليمي؟ اضغط هنا

Interlayer magnetism in Fe3-xGeTe2

97   0   0.0 ( 0 )
 نشر من قبل Tom Berlijn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fe$_{3-x}$GeTe$_2$ is a layered van der Waals magnetic material with a relatively high ordering temperature and large anisotropy. While most studies have concluded the interlayer ordering to be ferromagnetic, there have also been reports of interlayer antiferromagnetism in Fe$_{3-x}$GeTe$_2$. Here, we investigate the interlayer magnetic ordering by neutron diffraction experiments, scanning tunneling microscopy (STM) and spin-polarized STM measurements, density functional theory plus U calculations and STM simulations. We conclude that the layers of Fe$_{3-x}$GeTe$_2$ are coupled ferromagnetically and that in order to capture the magnetic and electronic properties of Fe$_{3-x}$GeTe$_2$ within density functional theory, Hubbard U corrections need to be taken into account.



قيم البحث

اقرأ أيضاً

Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking orders that are energetically comparable but may significantly differ in terms of electronic structures, e.g. magnetism. Inspired by several recent experiments showing interlayer anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling results from a new stacking order with the C2/m space group symmetry, rather than the graphene-like one with R3 as previously believed. Moreover, we demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are governed by two different mechanisms, namely ferromagnetic super-exchange and direct-exchange interactions, which are largely decoupled because of their significant difference in strength at the strong- and weak-interaction limits. This allows the much weaker interlayer magnetic coupling to be more feasibly tuned by stacking orders solely. Given the fact that interlayer magnetic properties can be altered by changing crystal structure with different stacking orders, our work opens a new paradigm for tuning interlayer magnetic properties with the freedom of stacking order in two dimensional layered materials.
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe$_3$GeTe$_2$ has been investigated by a combination of synthesis, x-ray and neutron diffraction, high resolution microscopy, and magnetization measurements. Single cryst als were synthesized by self-flux reactions, and single crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)$mu_B$/Fe aligned along the $c$-axis at 4K. These flux-grown crystals have a lower Curie temperature $T_{textrm{c}}approx$150K compared to crystals previously grown by vapor transport ($T_{textrm{c}}$=220K). The difference is a reduced Fe content in the flux grown crystals, as illustrated by the behavior observed in a series of polycrystalline samples. As Fe-content decreases, so does the Curie temperature, magnetic anisotropy, and net magnetization. In addition, Hall effect and thermoelectric measurements on flux-grown crystals suggest multiple carrier types contribute to electrical transport in Fe$_{3-x}$GeTe$_2$ and structurally-similar Ni$_{3-x}$GeTe$_2$.
The weak antilocalization (WAL) effect is known as a quantum correction to the classical conductivity, which never appeared in two-dimensional magnets. In this work, we reported the observation of a WAL effect in the van der Waals ferromagnet Fe5-xGe Te2 with a Curie temperature Tc ~ 270 K, which can even reach as high as ~ 120 K. The WAL effect could be well described by the Hikami-Larkin-Nagaoka and Maekawa-Fukuyama theories in the presence of strong spin-orbit coupling (SOC). Moreover, A crossover from a peak to dip behavior around 60 K in both the magnetoresistance and magnetoconductance was observed, which could be ascribed to a rare example of temperature driven Lifshitz transition as indicated by the angle-resolved photoemission spectroscopy measurements and first principles calculations. The reflective magnetic circular dichroism measurements indicate a possible spin reorientation that kills the WAL effect above 120 K. Our findings present a rare example of WAL effect in two-dimensional ferromagnet and also a magnetotransport fingerprint of the strong SOC in Fe5-xGeTe2. The results would be instructive for understanding the interaction Hamiltonian for such high Tc itinerant ferromagnetism as well as be helpful for the design of next-generation room temperature spintronic or twistronic devices.
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the $a$-$b$ plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold $a$-$b$ plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmanns semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of $2.6times10^{-14}$~s and the mean free path of $15$~nm at 1.8~K in our samples of ZrSiS.
The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present $ab$ $initio$ band calculations, electrical transport and angle- resolved photoemission spectroscopy (ARPES) measurements on the magnetic semimetal EuAs$_3$, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic (AFM) ground state at low temperature, featuring a pair of massive Dirac points, inverted bands and topological surface states on the (010) surface. Shubnikov-de Haas (SdH) oscillations in the AFM state identify nonzero Berry phase and a negative longitudinal magnetoresistance ($n$-LMR) induced by the chiral anomaly, confirming the topological nature predicted by band calculations. When magnetic moments are fully polarized by an external magnetic field, an unsaturated and extremely large magnetoresistance (XMR) of $sim$ 2$times10^5$ % at 1.8 K and 28.3 T is observed, likely arising from topological protection. Consistent with band calculations for the spin-polarized state, four new bands in quantum oscillations different from those in the AFM state are discerned, of which two are topologically protected. Nodal-line structures at the $Y$ point in the Brillouin zone (BZ) are proposed in both the spin-polarized and paramagnetic states, and the latter is proven by ARPES. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs$_3$ provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا