ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity-dependent extension of the McLerran-Venugopalan model

84   0   0.0 ( 0 )
 نشر من قبل Florian Cougoulic
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a generalization of the McLerran-Venugopalan (MV) model including helicity effects for a longitudinally polarized target (a proton or a large nucleus). The extended MV model can serve as the initial condition for the helicity generalization of the JIMWLK evolution equation constructed in our previous paper, as well as for calculation of helicity-dependent observables in the quasi-classical approximation to QCD.



قيم البحث

اقرأ أيضاً

94 - Kenji Fukushima 2008
We study discrepancy between the analytical definition and the numerical implementation of the McLerran-Venugopalan (MV) model. The infinitesimal extent of a fast-moving nucleus should retain longitudinal randomness in the color source distribution e ven when the longitudinal extent approximates zero due to the Lorentz contraction, which is properly taken into account in the analytical treatment. We point out that the longitudinal randomness is lost in numerical simulations because of lack of the path-ordering of the Wilson line along the longitudinal direction. We quantitatively investigate how much the results with and without longitudinal randomness differ from each other. We finally mention that the discrepancy could be absorbed in a choice of the model parameter in the physical unit, and nevertheless, it is important for a full theory approach.
Using a recursive solution of the Yang-Mills equation, we calculate analytic expressions for the gluon fields created in ultra-relativistic heavy ion collisions at small times $tau$. We have worked out explicit solutions for the fields and the energy momentum tensor up to 4th order in an expansion in $tau$. We generalize the McLerran-Venugopalan model to allow for a systematic treatment of averaged charge densities $mu^2$ that vary as a function of transverse coordinates. This allows us to calculate radial, elliptic and directed flow of gluon fields. Our results can serve as initial conditions for hydrodynamic simulations of nuclear collisions that include initial flow.
We present a Monte Carlo based analysis of the combined world data on polarized lepton-nucleon deep-inelastic scattering at small Bjorken $x$ within the polarized quark dipole formalism. We show for the first time that double-spin asymmetries at $x<0 .1$ can be successfully described using only small-$x$ evolution derived from first-principles QCD, allowing predictions to be made for the $g_1$ structure function at much smaller $x$. Anticipating future data from the Electron-Ion Collider, we assess the impact of electromagnetic and parity-violating polarization asymmetries on $g_1$ and demonstrate an extraction of the individual flavor helicity PDFs at small $x$.
Based on the Kharzeev-McLerran-Warringa (KMW) model that estimates strong electromagnetic (EM) fields generated in relativistic heavy-ion collisions, we generalize the formulas of EM fields in the vacuum by incorporating the longitudinal position dep endence, the generalized charge distributions and retardation correction. We further generalize the formulas of EM fields in the pure quark-gluon plasma (QGP) medium by incorporating a constant Ohm electric conductivity and also during the realistic early-time stages QGP evolution by using a time-dependent electric conductivity. Using the extended KMW model, we observe a slower time evolution and a more reasonable impact parameter $b$ dependence of the magnetic field strength than those from the original KMW model in the vacuum. The inclusion of medium effects by using the lattice data helps to further prolong the time evolution of magnetic field, such that the magnetic field strength during the realistic QGP evolution at thermal freeze-out time can meet the $1sigma$ bound constrained from experimentally measured difference in global polarizations of $Lambda$ and $bar{Lambda}$ hyperons in Au+Au collisions at top RHIC energy. These generalized formulations in the extended KMW model will be potentially useful for many EM fields relevant studies in heavy-ion collisions, especially at lower colliding energies and for various species of colliding nuclei.
We demonstrate that spontaneous transverse polarization of Lambda baryon ($Lambda$) production in $e^+e^-$ annihilation can be described using the transverse momentum dependent polarizing fragmentation functions (TMD PFFs). Using a simple Gaussian mo del, we perform an extraction of the TMD PFFs by fitting the BELLE collaborations recent measurement of the $Lambda$ transverse polarization in back-to-back $Lambda+h$ production in $e^+ e^-$ collisions, $e^{-} + e^{+} rightarrow Lambda^{uparrow}+h+X$. We find that this simple model accurately describes the experimental data for $Lambda$ production associated with pions and kaons, and we are able to determine TMD PFFs for different quark flavors. We use these newly extracted TMD PFFs to make predictions for the transverse polarization of $Lambda$ produced in semi-inclusive deep inelastic scattering at a future electron-ion collider, and find that such a polarization is around $10%$ and should be measurable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا