The aim of this note is to examine the efficacy of a recently developed approach to the recovery of nonlinear water waves from pressure measurements at the seabed, by applying it to the celebrated extreme Stokes wave.
This work studies the effectiveness of several machine learning techniques for predicting extreme events occurring in the flow around an airfoil at low Reynolds. For certain Reynolds numbers the aerodynamic forces exhibit intermittent fluctuations ca
used by changes in the behavior of vortices in the airfoil wake. Such events are prototypical of the unsteady behavior observed in airfoils at low Reynolds and their prediction is extremely challenging due to their intermittency and the chaotic nature of the flow. We seek to forecast these fluctuations in advance of their occurrence by a specified length of time. We assume knowledge only of the pressure at a discrete set of points on the surface of the airfoil, as well as offline knowledge of the state of the flow. Methods include direct prediction from historical pressure measurements, flow reconstruction followed by forward integration using a full order solver, and data-driven dynamic models in various low dimensional quantities. Methods are compared using several criteria tailored for extreme event prediction. We show that methods using data-driven models of low order dynamic variables outperform those without dynamic models and that unlike previous works, low dimensional initializations do not accurately predict observables with extreme events such as drag.
A recent study investigated the propagation of error in a Velocimetry-based Pressure (V-Pressure) field reconstruction problem by directly analyzing the properties of the pressure Poisson equation (Pan et al., 2016). In the present work, we extend th
ese results by quantifying the effect of the error profile in the data field (shape/structure of the error in space) on the resultant error in the reconstructed pressure field. We first calculate the mode of the error in the data that maximizes error in the pressure field, which is the most dangerous error (called the worst error in the present work). This calculation of the worst error is equivalent to finding the principle mode of, for example, an Euler-Bernoulli beam problem in one-dimension and the Kirchhoff-Love plate in two-dimensions, thus connecting the V-Pressure problem from experimental fluid mechanics to buckling elastic bodies from elastic mechanics. Taking advantage of this analogy, we then analyze how the error profile (e.g., spatial frequency of the error and the location of the most concentrated error) in the data field coupled with fundamental features of the flow domain (i.e., size, shape, and dimension of the domain, and the configuration of boundary conditions) significantly affects the error propagation from data to the reconstructed pressure. Our analytical results lend to practical applications in two ways. First, minimization of error propagation can be achieved by avoiding low-frequency error profiles in data similar to the worst case scenarios and error concentrated at sensitive locations. Second, small amounts of the error in the data, if the error profile is similar to the worst error case, can cause significant error in the reconstructed pressure field; such a synthetic error can be used to benchmark V-Pressure algorithms.
Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood
. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as $R sim t^{1/2}$ but follows a super-diffusive scaling law $R sim t^n$ ($n>0.5$), which is similar to that observed in some field experiments. For the system studied here, the super-diffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling
for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
We derive an expression for the velocity profile of a pressure-driven yield-stress fluid flow-ing around a two-dimensional concentric annulus. This result allows the prediction of the effects of channel curvature on the pressure gradient required to
initiate flow for given yield stress, and for the width of the plug region and the flux through the channel at different curvatures. We use it to validate numerical simulations of the flow from a straight channel into a curved channel which show how the fluid first yields everywhere before reaching the predicted velocity profile.