ﻻ يوجد ملخص باللغة العربية
We study the computational complexity of two well-known graph transversal problems, namely Subset Feedback Vertex Set and Subset Odd Cycle Transversal, by restricting the input to $H$-free graphs, that is, to graphs that do not contain some fixed graph~$H$ as an induced subgraph. By combining known and new results, we determine the computational complexity of both problems on $H$-free graphs for every graph $H$ except when $H=sP_1+P_4$ for some $sgeq 1$. As part of our approach, we introduce the Subset Vertex Cover problem and prove that it is polynomial-time solvable for $(sP_1+P_4)$-free graphs for every $sgeq 1$.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions neede
The $r$-th iterated line graph $L^{r}(G)$ of a graph $G$ is defined by: (i) $L^{0}(G) = G$ and (ii) $L^{r}(G) = L(L^{(r- 1)}(G))$ for $r > 0$, where $L(G)$ denotes the line graph of $G$. The Hamiltonian Index $h(G)$ of $G$ is the smallest $r$ such th
Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved tr
For every constant $d geq 3$ and $epsilon > 0$, we give a deterministic $mathrm{poly}(n)$-time algorithm that outputs a $d$-regular graph on $Theta(n)$ vertices that is $epsilon$-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by $2sqr
A graph $G = (V,E)$ is a double-threshold graph if there exist a vertex-weight function $w colon V to mathbb{R}$ and two real numbers $mathtt{lb}, mathtt{ub} in mathbb{R}$ such that $uv in E$ if and only if $mathtt{lb} le mathtt{w}(u) + mathtt{w}(v)