ﻻ يوجد ملخص باللغة العربية
A graph $G = (V,E)$ is a double-threshold graph if there exist a vertex-weight function $w colon V to mathbb{R}$ and two real numbers $mathtt{lb}, mathtt{ub} in mathbb{R}$ such that $uv in E$ if and only if $mathtt{lb} le mathtt{w}(u) + mathtt{w}(v) le mathtt{ub}$. In the literature, those graphs are studied as the pairwise compatibility graphs that have stars as their underlying trees. We give a new characterization of double-threshold graphs, which gives connections to bipartite permutation graphs. Using the new characterization, we present a linear-time algorithm for recognizing double-threshold graphs. Prior to our work, the fastest known algorithm by Xiao and Nagamochi [COCOON 2018] ran in $O(n^6)$ time, where $n$ is the number of vertices.
The interval graph for a set of intervals on a line consists of one vertex for each interval, and an edge for each intersecting pair of intervals. A probe interval graph is a variant that is motivated by an application to genomics, where the interval
Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved tr
For every constant $d geq 3$ and $epsilon > 0$, we give a deterministic $mathrm{poly}(n)$-time algorithm that outputs a $d$-regular graph on $Theta(n)$ vertices that is $epsilon$-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by $2sqr
The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of vertex representations. We exhibit circular-arc graphs as the first example of a graph class where the recognition is polynomia
We study the computational complexity of two well-known graph transversal problems, namely Subset Feedback Vertex Set and Subset Odd Cycle Transversal, by restricting the input to $H$-free graphs, that is, to graphs that do not contain some fixed gra