ﻻ يوجد ملخص باللغة العربية
We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accounting for both nearest neighbor and next-nearest neighbor exchange interactions with easy-plane anisotropy, we perform atomistic spin simulations on a two-terminal configuration across the full magnetic phase diagram. We found that as long as the ground state magnetic moments remain in-plane, irrespective of whether the magnetic configuration is ferromagnetic, collinear or non-collinear antiferromagnetic, the system exhibits spin superfluid behavior with a device output that is independent on the value of the exchange interactions. When the magnetic frustration is large enough to compete with the easy-plane anisotropy and cant the magnetic moments out of the plane, the spin transport progressively evolves towards the diffusive regime. The robustness of spin superfluidity close to magnetic phase boundaries is investigated and we uncover the possibility for {em proximate} spin superfluidity close to the ferromagnetic transition.
Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin
We compare a fully quantum mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement bet
We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time $tPh(T)$ from diffusive or ergodic 1D ($tPh^{-1} propto T^{2/3
Frustrated magnets are known to support two-dimensional topological solitons, called skyrmions. A continuum model for frustrated magnets has recently been shown to support both two-dimensional skyrmions and three-dimensional knotted solitons (hopfion
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th