ﻻ يوجد ملخص باللغة العربية
Frustrated magnets are known to support two-dimensional topological solitons, called skyrmions. A continuum model for frustrated magnets has recently been shown to support both two-dimensional skyrmions and three-dimensional knotted solitons (hopfions). In this note we derive lower bounds for the energies of these solitons expressed in terms of their topological invariants. The bounds are linear in the degree in the case of skyrmions and scale as the Hopf degree to the power 3/4 in the case of hopfions.
We exhaustively construct instanton solutions and elucidate their properties in one-dimensional anti-ferromagnetic chiral magnets based on the $O(3)$ nonlinear sigma model description of spin chains with the Dzyaloshinskii-Moriya (DM) interaction. By
We construct a low-energy effective action for a two-dimensional non-relativistic topological (i.e. gapped) phase of matter in a continuum, which completely describes all of its bulk electrical, thermal, and stress-related properties in the limit of
We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accoun
The ground state of frustrated (antiferromagnetic) triangular molecular magnets is characterized by two total-spin $S =1/2$ doublets with opposite chirality. According to a group theory analysis [M. Trif textit{et al.}, Phys. Rev. Lett. textbf{101},
We theoretically investigate the dynamics of magnetic hedgehogs, which are three-dimensional topological spin textures that exist in common magnets, focusing on their transport properties and connections to spintronics. We show that fictitious magnet