ﻻ يوجد ملخص باللغة العربية
This paper presents a fully automatic framework for extracting editable 3D objects directly from a single photograph. Unlike previous methods which recover either depth maps, point clouds, or mesh surfaces, we aim to recover 3D objects with semantic parts and can be directly edited. We base our work on the assumption that most human-made objects are constituted by parts and these parts can be well represented by generalized primitives. Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders. To this end, we build a novel instance-aware segmentation network for accurate part separation. Our GeoNet outputs a set of smooth part-level masks labeled as profiles and bodies. Then in a key stage, we simultaneously identify profile-body relations and recover 3D parts by sweeping the recognized profile along their body contour and jointly optimize the geometry to align with the recovered masks. Qualitative and quantitative experiments show that our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction. The dataset and code of AutoSweep are available at https://chenxin.tech/AutoSweep.html.
Acquiring 3D geometry of real world objects has various applications in 3D digitization, such as navigation and content generation in virtual environments. Image remains one of the most popular media for such visual tasks due to its simplicity of acq
We introduce Hair-GANs, an architecture of generative adversarial networks, to recover the 3D hair structure from a single image. The goal of our networks is to build a parametric transformation from 2D hair maps to 3D hair structure. The 3D hair str
Light fields are 4D scene representation typically structured as arrays of views, or several directional samples per pixel in a single view. This highly correlated structure is not very efficient to transmit and manipulate (especially for editing), t
Generating free-viewpoint videos is critical for immersive VR/AR experience but recent neural advances still lack the editing ability to manipulate the visual perception for large dynamic scenes. To fill this gap, in this paper we propose the first a
In this paper, we present a learning-based approach for recovering the 3D geometry of human head from a single portrait image. Our method is learned in an unsupervised manner without any ground-truth 3D data. We represent the head geometry with a p