ﻻ يوجد ملخص باللغة العربية
We apply a construction developed in a previous paper by the authors in order to obtain a formula which enables us to compute $ell^2$-Betti numbers coming from a family of group algebras representable as crossed product algebras. As an application, we obtain a whole family of irrational $ell^2$-Betti numbers arising from the lamplighter group algebra $K[mathbb{Z}_2 wr mathbb{Z}]$, being $K$ a subfield of the complex numbers closed under complex conjugation. This procedure is constructive, in the sense that one has an explicit description of the elements realizing such irrational numbers. This extends the work made by Grabowski, who first computed irrational $ell^2$-Betti numbers from the algebras $mathbb{Q}[mathbb{Z}_n wr mathbb{Z}]$, where $n geq 2$ is a natural number. We also apply the techniques developed to the (generalized) odometer algebra $mathcal{O}(overline{n})$, where $overline{n}$ is a supernatural number. We compute its $*$-regular closure, and this allows us to fully characterize the set of $ell^2$-Betti numbers arising from $mathcal{O}(overline{n})$.
We investigate dynamical analogues of the $L^2$-Betti numbers for modules over integral group ring of a discrete sofic group. In particular, we show that the $L^2$-Betti numbers exactly measure the failure of addition formula for dynamical invariants.
We show that the inert subgroups of the lamplighter group fall into exactly five commensurability classes. The result is then connected with the theory of totally disconnected locally compact groups and with algebraic entropy.
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
In this paper we study virtual rational Betti numbers of a nilpotent-by-abelian group $G$, where the abelianization $N/N$ of its nilpotent part $N$ satisfies certain tameness property. More precisely, we prove that if $N/N$ is $2(c(n-1)-1)$-tame as a