ﻻ يوجد ملخص باللغة العربية
There have been recently several works studying the regularized stochastic heat equation (SHE) and Kardar-Parisi-Zhang (KPZ) equation in dimension $dgeq 3$ as the smoothing parameter is switched off, but most of the results did not hold in the full temperature regions where they should. Inspired by martingale techniques coming from the directed polymers literature, we first extend the law of large numbers for SHE obtained in [MSZ16] to the full weak disorder region of the associated polymer model and to more general initial conditions. We further extend the Edwards-Wilkinson regime of the SHE and KPZ equation studied in [GRZ18,MU17,DGRZ20] to the full $L^2$-region, along with multidimensional convergence and general initial conditions for the KPZ equation (and SHE), which were not proven before. To do so, we rely on a martingale CLT combined with a refinement of the local limit theorem for polymers.
We consider the discrete directed polymer model with i.i.d. environment and we study the fluctuations of the tail $n^{(d-2)/4}(W_infty - W_n)$ of the normalized partition function. It was proven by Comets and Liu, that for sufficiently high temperatu
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that
We prove a strong law of large numbers for the Newtonian capacity of a Wiener sausage in the critical dimension four.
We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda | abla h(t,x)|^2 +sqrt{D}, eta(t,x), qquad (t,x)inmathbb{R}_+timesmathbb{R}^d $$ in $dge 3$ dimensions in the perturbative regime, i.e. f
The solution of Kardar-Parisi-Zhang equation (KPZ equation) is solved formally via Cole-Hopf transformation $h=log u$, where $u$ is the solution of multiplicative stochastic heat equation(SHE). In earlier works by Chatterjee and Dunlap, Caravenna, Su