ﻻ يوجد ملخص باللغة العربية
We study Yukawa Renormalization Group (RG) running effects in the context of the Standard Model Effective Theory (SMEFT).The Yukawa running being flavour dependent leads to RG-induced off-diagonal entries, so that initially diagonal Yukawa matrices at the high scale have to be rediagonalized at the electroweak (EW) scale. Performing such flavour rotations can lead to flavour violating operators which differ from the ones obtained through SMEFT RG evolution. We show, that these flavour rotations can have a large impact on low-energy phenomenology. In order to demonstrate this effect, we compare the two sources of flavour violation numerically as well as analytically and study their influence on several examples of down-type flavour transitions. For this purpose we consider $B_s-bar B_s$ mixing, $bto sgamma$, $bto s ell ell$ as well as electroweak precision observables. We show that the rotation effect can be comparable or even larger than the contribution from pure RGE evolution of the Wilson coefficients.
We calculate the complete tree and one-loop matching of the dimension 6 Standard Model Effective Field Theory (SMEFT) with unbroken $U(3)^5$ flavour symmetry to the operators of the Weak Effective Theory (WET) which are responsible for flavour changi
We analyse how $U(3)^5$ and $U(2)^5$ flavour symmetries act on the Standard Model Effective Field Theory, providing an organising principle to classify the large number of dimension-six operators involving fermion fields. A detailed counting of such
We consider the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with flavour-universal boundary conditions at the GUT scale, in which the lepton flavour violating (LFV) decays muto e + gamma, tauto mu + gamma, etc.,are
We compute the full vacuum polarization tensor in the minimal QED extension. We find that its low-energy limit is dominated by the radiatively induced Chern-Simons-like term and the high-energy limit is dominated by the c-type coefficients. We invest
We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive t