ﻻ يوجد ملخص باللغة العربية
We compute the full vacuum polarization tensor in the minimal QED extension. We find that its low-energy limit is dominated by the radiatively induced Chern-Simons-like term and the high-energy limit is dominated by the c-type coefficients. We investigate the implications of the high-energy limit for the QED and QCD running couplings. In particular, the QCD running offers the possibility to study Lorentz-violating effects on the parton distribution functions and observables such as the hadronic R ratio.
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w
We study an extension of QED involving a light pseudoscalar (an axion-like particle), together with a very massive fermion which has Lorentz-violating interactions with the photon and the pseudoscalar, including a nonminimal Lorentz-violating couplin
Lorentz-violating neutrino parameters have been severely constrained on the basis of astrophysical considerations. In the high-energy limit, one generally assumes a superluminal dispersion relation of an incoming neutrino of the form E ~ |p|v, where
The effect of Lorentz symmetry violation in the phenomenon of photon gravitational bending, is investigated. Using a semiclassical approach, where the photon is described by the Carrol-Field-Jackiw (CFJ) electrodynamics which is responsible for imple
We study how effects of the CP violation can be observed indirectly by precision measurements of Higgs boson couplings at a future Higgs factory such as the international linear collider. We consider two Higgs doublet models with the softly broken di