ﻻ يوجد ملخص باللغة العربية
Parameter estimation of mixture regression model using the expectation maximization (EM) algorithm is highly sensitive to outliers. Here we propose a fast and efficient robust mixture regression algorithm, called Component-wise Adaptive Trimming (CAT) method. We consider simultaneous outlier detection and robust parameter estimation to minimize the effect of outlier contamination. Robust mixture regression has many important applications including in human cancer genomics data, where the population often displays strong heterogeneity added by unwanted technological perturbations. Existing robust mixture regression methods suffer from outliers as they either conduct parameter estimation in the presence of outliers, or rely on prior knowledge of the level of outlier contamination. CAT was implemented in the framework of classification expectation maximization, under which a natural definition of outliers could be derived. It implements a least trimmed squares (LTS) approach within each exclusive mixing component, where the robustness issue could be transformed from the mixture case to simple linear regression case. The high breakdown point of the LTS approach allows us to avoid the pre-specification of trimming parameter. Compared with multiple existing algorithms, CAT is the most competitive one that can handle and adaptively trim off outliers as well as heavy tailed noise, in different scenarios of simulated data and real genomic data. CAT has been implemented in an R package `RobMixReg available in CRAN.
Linear regression with the classical normality assumption for the error distribution may lead to an undesirable posterior inference of regression coefficients due to the potential outliers. This paper considers the finite mixture of two components wi
The Gaussian process (GP) regression can be severely biased when the data are contaminated by outliers. This paper presents a new robust GP regression algorithm that iteratively trims the most extreme data points. While the new algorithm retains the
We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributi
Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification, and clustering. For regression and cluster analyses of continuous data, MoE usually use normal experts following the Gaussian distribut
Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, i