ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mixture of Linear-Linear Regression Models for Linear-Circular Regression

97   0   0.0 ( 0 )
 نشر من قبل Chiwoo Park
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributions and advances it for a linear-circular regression analysis. Some previous works model a circular variable as projection of a bivariate Gaussian random vector on the unit square, and the statistical inference of the resulting model involves complicated sampling steps. The proposed model treats circular responses as the result of the modulo operation on unobserved linear responses. The resulting model is a mixture of multiple linear-linear regression models. We present two EM algorithms for maximum likelihood estimation of the mixture model, one for a parametric model and another for a non-parametric model. The estimation algorithms provide a great trade-off between computation and estimation accuracy, which was numerically shown using five numerical examples. The proposed approach was applied to a problem of estimating wind directions that typically exhibit complex patterns with large variation and circularity.



قيم البحث

اقرأ أيضاً

Field observations form the basis of many scientific studies, especially in ecological and social sciences. Despite efforts to conduct such surveys in a standardized way, observations can be prone to systematic measurement errors. The removal of syst ematic variability introduced by the observation process, if possible, can greatly increase the value of this data. Existing non-parametric techniques for correcting such errors assume linear additive noise models. This leads to biased estimates when applied to generalized linear models (GLM). We present an approach based on residual functions to address this limitation. We then demonstrate its effectiveness on synthetic data and show it reduces systematic detection variability in moth surveys.
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Duembgen, Samworth and Schuhmacher (2011) on regression models with log-concave error distributions.
72 - Baisen Liu , Jiguo Cao 2016
The functional linear model is a popular tool to investigate the relationship between a scalar/functional response variable and a scalar/functional covariate. We generalize this model to a functional linear mixed-effects model when repeated measureme nts are available on multiple subjects. Each subject has an individual intercept and slope function, while shares common population intercept and slope function. This model is flexible in the sense of allowing the slope random effects to change with the time. We propose a penalized spline smoothing method to estimate the population and random slope functions. A REML-based EM algorithm is developed to estimate the variance parameters for the random effects and the data noise. Simulation studies show that our estimation method provides an accurate estimate for the functional linear mixed-effects model with the finite samples. The functional linear mixed-effects model is demonstrated by investigating the effect of the 24-hour nitrogen dioxide on the daily maximum ozone concentrations and also studying the effect of the daily temperature on the annual precipitation.
Modern applications require methods that are computationally feasible on large datasets but also preserve statistical efficiency. Frequently, these two concerns are seen as contradictory: approximation methods that enable computation are assumed to d egrade statistical performance relative to exact methods. In applied mathematics, where much of the current theoretical work on approximation resides, the inputs are considered to be observed exactly. The prevailing philosophy is that while the exact problem is, regrettably, unsolvable, any approximation should be as small as possible. However, from a statistical perspective, an approximate or regularized solution may be preferable to the exact one. Regularization formalizes a trade-off between fidelity to the data and adherence to prior knowledge about the data-generating process such as smoothness or sparsity. The resulting estimator tends to be more useful, interpretable, and suitable as an input to other methods. In this paper, we propose new methodology for estimation and prediction under a linear model borrowing insights from the approximation literature. We explore these procedures from a statistical perspective and find that in many cases they improve both computational and statistical performance.
We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا