ﻻ يوجد ملخص باللغة العربية
In this study, we explore the impact of inhomogeneities in the spatial distribution of interstellar dust on spatial scales of $le1$ au caused by ion shadowing forces on the optical properties of diffuse interstellar medium (ISM) as well as on the dust temperature. We show that recently proposed possibility that interstellar dust grains in the diffuse ISM are grouped in spherical cloudlets (clumps) may significantly affect the observed optical properties of the diffuse ISM in comparison to that calculated under the commonly accepted assumption on the uniform dust/gas mixture if the size of clumps $gtrsim0.1$ au. We found that opacity of an arbitrary region of diffuse ISM quickly decreases with growth of dusty clumps. We also studied the dependence of opacity and dust temperature inside the dusty clumps on their size. We show that the clumps larger than 0.1 au are opaque for far ultraviolet radiation. Dust temperature exhibit a gradient inside a clump, decreasing from the edge to the center by several degrees for a clump of a size of 0.1 au and larger. We argue that dust temperatures and high opacity within clumps larger than 0.1 au may facilitate somewhat more efficient synthesis of molecules on surfaces of interstellar grains in the diffuse ISM than it was anticipated previously. On the other hand, the presence of clumps with sizes below 0.1 au makes small or negligible influence on the optical properties of the diffuse ISM in comparison to the case with uniform dust/gas mixture.
We study infrared emission of 17 isolated, diffuse clouds with masses of order solar masses, to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds
We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, linear and circular polarisation of light. The model is set-up with a small number of parameters. It consists of a mixture
This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with avera
Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of th
The Planck-HFI all-sky survey from 353 to 857GHz combined with the 100 microns IRAS show that the dust properties vary in the diffuse ISM at high Galactic latitude (1e19<NH<2.5e20 H/cm2). Our aim is to explain these variations with changes in the ISM